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Abstract
We describe combinatorial dg-Hopf coloured cooperadic models for configuration

spaces of points in first quarter and in n-sided polygon. Using first model we obtain
another proof of version of Kontsevich formality theorem for two subspaces in vector
space and extend formality morphism to a G∞ one.

1 Introduction

Our work is inspired by the papers [5] and [7]. In [7] Thomas Willwacher constructed
combinatorial cooperadic model for Swiss-Cheese operad and proved that every L∞ stable
formality morphism Tpoly →Dpoly can be up to homotopy extended to G∞. We extend his
results for two different configuration spaces.

Firstly, we construct cooperadic model for the configuration space of points in the first
quarter. This configuration space is important for stable formality morphism for vector
space with two subspaces (branes). In [5] authors constructed a L∞ stable formality
morphism U ∶ Tpoly → CC●(Cat∞(A,B,K)). We describe another L∞ stable formality
morphism, such that restriction to CC●(A) we obtain the Kontsevich stable formality
morphism. We prove that this morphism up to homotopy can be extended to G∞ one.

Secondly, we construct cooperadic model for the configuration space of points in n-
sided polygon. We believe that this model can be used for the study of configuration
space of points on Riemann surfaces with punctures and in conformal field theory.

The structure of the paper is as follows. In section 2 we desribe configuration space
of points in the first quarter and operadic structure on it. Section 3 describes combi-
natorial 4-coloured dg-Hopf cooperad A. In section 4 we construct a map (Kontsevich
space integral I) of 4-coloured dg-Hopf cooperads between A and semi-algebraic forms on
configuration spaces. Section 5 is devoted to the proof that I is quasi-isomorphism. In
section 6 we recall key notions from A∞ framework. In section 7 we construct L∞ stable
formality morphism U ∶ Tpoly → CC●(Cat∞(A,B,K)) and prove that it can be extended
to a G∞ one. Section 8 describes how to adapt the constructions of sections 2–5 to the
configuration space of points in polygon.

2 Configuration space

Definition 1. Let C(n,m, k) be a configuration space of n +m + k points in the first
quarter of real plane without origin, such that m points belong to x-axis, k points belong
to y-axis and n points don’t belong to either of the axes. For convenience we consider an
element of C(n,m, k) as n points of type I, m points of type II, k points of type III
and distinguish additional point 0 in the origin. On this configuration space there is the
natural action of R+, (λ(X))(p) = λX(p), where X ∈ C(n,m, k) is a configuration and p
is a number of point from 1 to n+m+k. We define QC(n,m, k) as factor C(n,m, k) /R+ .

For every pair of numbers a, b from 1 to n+m+k we construct a map ωa,b ∶ QC(n,m, k)→
S1, such that ωa,b(X) = X(a)−X(b)

∣X(a)−X(b)∣ . In other words to every pair of points we assign the
direction of vector between them.

For every ordered triple of numbers a, b, c we construct a map Θa,b,c ∶ QC(n,m, k) →
[0;+∞], such that Θa,b,c(X) = ∣X(a)−X(b)∣

∣X(a)−X(c)∣ . With this maps we have the embedding i ∶
QC(n,m, k) → (S1)N × [0;+∞]M with N – number of pairs and M – number of ordered
triples.
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Definition 2. The closure of i(QC(n,m, k)) is denoted by QC(n,m, k) and is called
Fulton-Macpherson compactification.

Proposition 1. The Fulton-Macpherson compactification QC(n,m, k) is homotopically
equivalent to the QC(n,m, k).

We define in the same way Fulton-Macpherson compactifications C(n) of points in R2

and SC(n,m) with n points in the upper half-plane and m points on x-axis.

2.1 Decomposition of the boundary of the compactification

For the short we write QC(V ) instead QC(n,m, k). The element X in the boundary
of compactification QC(V ) is determined by some clusters of points, such that for any
points a, b in the cluster and c out we have Θa,b,c(X) = 0. More specifically let Y be a
configuration in QC(n,m, k) and Xi be the configuration, obtained from Y by reducing
i times all distances between points in this cluster. Then X is the limit of Yi. We have 4
types of clusters:

(i) The cluster match to the set of points, converged to the point of
type I. Therefore all this points should be type one too. This strata
has a form of QC(n−l+1,m, k)×C(l), when C(l) is the configuration
space of l points in R2 modulo translations and multiplication by
scalar. On the figure the cluster of points converges to type I point.
(ii) The cluster match to the set of points, converged to the point
of type II. Therefore all this points should be types I or II. This
strata has a form of QC(n− l,m−t+1, k)×SC(l, t), when SC(l, t) is
the configuration space of l points in R2 and t points on the x-axis
modulo translations and multiplication by scalar.
(iii) The cluster match to the set of points, converged to the point
of type III. Therefore all this points should be types I or III. This
strata has a form of QC(n− l,m, k−t+1)×SC(l, t), when SC(l, t) is
the configuration space of l points in R2 and t points on the y-axis
modulo translations and multiplication by scalar.
(iv) The cluster match to the set of points, converged to the 0.
Points in this cluster may be any type. This strata has a form of
QC(n − l,m − t, k − s) ×QC(l, t, s).
Of course, we can have some different clusters and this clusters may
be included one in another. By the set of clusters and configurations
in each of them we can uniquely obtain our configuration.
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Now we are going to define the specific coloured graphs re-
sponsible for the classification of boundary strata of QC(n,m, k).

A typical ele-
ment of admissible
coloured graphs.

In the graph we have the unique root vertex root. We define the
length l(v) of a vertex v as the number of edges in the minimal path
from this vertex to the root. Because considered graphs are trees
every path is minimal and therefore each edge connects two vertices
with length differed by one. We call the vertex v external if for any
connected by an edge vertex w we have l(w) < l(v). It follows that
every external vertex has only 1 edge (in other case we have a cycle,
considered of two edges from v to w and w′ and paths from w and w′

to the root vertex). We call internal all other vertices except for the
root vertex. For every vertex v we call the unique edge e between v
and w output if l(w) < l(v). It is convenient to add the output edge out to the root vertex
too. One can see that every path from the vertex to the root is a sequence of outputs and
therefore every edge is output for one of the vertices. If e, e′ are two consequent edges in
such path we call e′ an ancestor of e. Let out be ancestor to every other edge with the
endpoint root. Now the admissible coloured tree is a tree with all output edges for every
vertex coloured in one of 4 colours (we often say that the vertex is coloured in the same
colour) satisfying the following conditions:
(i) The ancestor of the edge of colour 4 can be only the edge of colour 4.
(ii) The ancestor of the edge of colour 2 can be only the edge of colour 2 or 4.
(iii) The ancestor of the edge of colour 3 can be only the edge of colour 3 or 4.
(iv) The edge out is colour 4.
We call the admissible coloured tree (n,m, k)-tree if it has n external vertex of colour 1,
m of colour 2 and k of colour 3.

Lemma 1. Boundary strata of QC(n,m, k) are in 1 − 1 correspondence with (n,m, k)
trees.

Proof. We associate to every boundary strata of QC(n,m, k) an admissible coloured tree
in the following way. For every point we assign the external vertex coloured in the colour
associated to the type of point, i.e. colour 1 to the points in the first quarter, 2 to the
points on x-axis and 3 – on y-axis. For a configuration in the open part of QC(n,m, k)
we assign graphs without internal vertices. For every cluster of type i we add an internal
vertex v of colour i and connect vertices corresponded to the points in cluster to v. In
such way for every set of clusters we obtain the unique graph. On the other hand by
the same rules from every (n,m, k) tree we can construct the set of clusters and the
corresponding boundary strata. Therefore this construction gives 1 − 1 correspondence
between (n,m, k)-graphs and boundary stratas of QC(n,m, k).

Corollary 1. The collection of spaces {QC,SC,SC,C} can be endowed with the struc-
ture of the 4-coloured operad.

Proof. We have 4 colours and therefore 4 different type of actions. The first colour
operad action is the composition with C(l). For the second, third and fourth components
of operad it is the usual composition in the operad of small discs (in 4-th case) or in
the Swiss-Cheese operad. For the forst component we define ○1

i ∶ QC(n,m, k) ⊗ C(l) →
QC(n+ l−1,m, k) as replacing i-th type I point, by the configuration space C(l). For the
boundary strata we replace i-th external vertex in the associated graph by the subgraph
of l external and 1 internal vertices of colour 1.
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The second colour operad action is zero on the 3-d and 4-th components of the operad.
On the second one it is usual operadic composition in the Swiss-Cheese operad. On the
first component we have ○2

i ∶ QC(n,m, k)⊗ SC(l, t)→ QC(n + l,m + t − 1, k) where m ⩾ i
is mapping two configurations to the boundary strata of QC(n + l,m + t − 1, k) of type
QC(n,m, k) × SC(l, t) replacing ith type II point, by the configuration space SC(l, t).
For the boundary strata we replace i-th external vertex in the associated graph by the
subgraph of l external vertices of colour 1 and t external and 1 internal of colour 2.

The third colour operad action is zero on the 2-d and 4-th components of the operad.
On the third one it is usual operadic composition in the Swiss-Cheese operad. On the
first component we have ○3

i ∶ QC(n,m, k)⊗ SC(l, t) → QC(n + l,m, k + t − 1) where k ⩾ i
is mapping two configurations to the boundary strata of QC(n + l,m, k + t − 1) of type
QC(n,m, k) × SC(l, t) replacing ith type III point, by the configuration space SC(l, t).
For the boundary strata we replace i-th external vertex in the associated graph by the
subgraph of l external vertices of colour 1 and t external and 1 internal of colour 3.

The fourth colour operad action is non-zero only on the first component of the operad:
○4 ∶ QC(n,m, k) ⊗QC(l, t, s) → QC(n + l,m + t, k + s) is mapping two configurations to
the boundary strata of QC(n + l,m + t, k + s) of type QC(n,m, k) ×QC(l, t, s), replacing
0 by the configuration space QC(l, t, s). For the boundary strata we replace i-th external
vertex in the associated graph by the subgraph of appropriate number of external vertices
and 1 internal of colour 4.

The associativity condition implies from the one for the coloured graphs.

Proposition 2. The image of i consecutive applying of partial operad compositions is a
submanifold with corners codimension i.

Proof. The image of i operadic compositions is included in the boundary strata corre-
sponded to the graph with i internal vertices. Such graphs correspond to the strata form
of X1×X2× . . .×Xi. It remains to prove that each product reduces the dimension by one.
For all components without first it is well-known. For the first one we have:

The dimension of QC(n,m, k) is 2n +m + k − 1. The dimension of C(l) is 2l − 3. The
dimension of SC(l, t) is 2l + t − 2. Let us consider the dimension of the image of each
partial composition:

(i)dim(QC(n,m, k) ×C(l)) = 2n +m + k − 1 + 2l − 3 = 2(n + l − 1) +m + k − 2 =
= dim(QC(n + l − 1,m, k)) − 1.

(ii)dim(QC(n,m, k) × SC(l, t)) = 2n +m + k − 1 + 2l + t − 2 =
= 2(n+l)+(m+t−1)+k−2 = dim(QC(n+l,m+t−1, k))−1 = dim(QC(n+l,m, k+t−1))−1.

(iii)dim(QC(n,m, k) ×QC(l, t, s)) = 2n +m + k − 1 + 2l + t + s − 1 =
= 2(n + l) + (m + t) + (k + s) − 2 = dim(QC(n + l,m + t, k + s)) − 1.
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The collection of algebras {Ω(QC(n,m, k)),Ω(SC(n,m)),Ω(SC(n, k)),Ω(C(n))} of
semi-algebraic forms on the corresponded topological spaces has induced cooperadic struc-
ture and de-Rham differential. It is easy to see, that they are compactible with each other
and give the structure of dg-Hopf 4-coloured cooperad. Now we can formulate the main
problem of our paper.

Question 1. Find the algebraic-combinatorical model for

Ω ∶= {Ω(QC(n,m, k)),Ω(SC(n,m)),Ω(SC(n, k)),Ω(C(n))},

i.e. the dg-Hopf 4coloured cooperad A and map I ∶ A→ Ω such that I is quasi-isomorphism
compactible with product, differential and cooperad structure.

It will be useful to describe more suitable decomposition of the boundary in the faces
codimension 0. Let A be a subset of V , i.e. a collection (l, s, t), such that l ⩽ n, s ⩽ m
and t ⩽ k. It is convenient to call points from A external and points from V /A - internal.
We have a canonical projection π ∶ QC(V )→ QC(A) forgetting all points not from A.

Proposition 3. For every V the space QC(V ) is manifold with corners. Moreover, the
projection map π ∶ QC(V )→ QC(A) is the semi-algebraic map.

Proof. The proof is parallel to the case of configuration space of points in R2. For more
details we refer to the [5, subsection 5.9].

Proposition 4. The boundary of QC(V ) is the union of images of operadic compositions
○ji ∶ QC[U] ⊗QC[W ] → QC(V ), such that ∣W ∣ ⩾ 2 and ∣U ∣ ⩾ 1. For the j = 4 we permit
W to be cardinality 1. Here we embed C(X) and SC(X) in QC(X) for the abuse of
notation. This images are codimension 0 faces of QC(V ) and their intersection is at least
codimension 1.

Proof. The proof of the statement is parallel to the one of the [5, Proposition 5.11].

2.2 The decomposition of the corresponding to π fiberwise bound-
ary.

Let us describe the decomposition of the corresponding to π fiberwise boundary.
Recall that QCδ(V ) = (δQC(V )) ∩ π−1(QC(A)/δQC(A)).
We call the operadic partial composition ○ji ∶ QC[U]⊗QC[W ]→ QC(V ), where j < 4

”good” if A ⊂ W or ∣A ∩W ∣ ⩽ 1 and all external points in W are of type j. In other
words the subset W may contain only one external vertex if the composition is applied in
this point. The partial composition ○4 is called ”good” if A ⊂ U or A ⊂ W , because this
composition is always applied in the point 0.

Proposition 5. The images of ”good” partial compositions give a stratification ofQCδ(V )
into codimension 0 faces. More specifically, each image is codimension 0 strata, an inter-
section of every two of them is at least codimension 1 and every configuration belong to
one of these stratum.

Proof. This statement is the adapted to our problem version of the [5, Proposition 5.20].
The only difference in the proof is that we can compose configuration QC(W ) with 1
external point by the 4-th colour action.
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3 Graphs

3.1 Graphs with external vertices

A typical element
of Gr(5,2,3).

Now we can start the definition of the sought-for collection of alge-
bras A. Firstly, let us define the space of graphs Gr(m,n, k). The
graph of type (n,m, k) in our convention is the set of n numerated
vertices in the first quarter (type I), m on the x-semiaxis (type II),
k on the y-semiaxis (type III) and distinguish vertex 0 in the origin
and ordered oriented edges between them. We prohibit loops, mul-
tiple edges, edges between points on the same axis (include 0) and
edges, started in a not type I vertex and ended in a type I one. Let
Gra(m,n, k) be the set of all graphs of type (n,m, k) and Gr(V )
be the vector space over R, generated by Gra(m,n, k). From now on we write V (Γ) and
E(Γ) for the sets of vertices and edges of the graph Γ. We have the natural action of

S ∶= SE(Γ) × Z /2Z
E(Γ)

on G(m,n, k). SE(Γ) acts by permutations on the set E(Γ) with

the sign of the permutation. The action of Z /2Z
E(Γ)

is given by inversing of the edges
with the sign. Let us consider the space of coinvariants G(n,m, k) ∶= Gr(n,m, k)S. In
other words for every graph in Gr(n,m, k) we can choose its orientation by numerating
and orientating all edges and obtain an graph representing an element of G(n,m, k).

Corollary 2. Any graph Γ ∈ Gr(n,m, k) consisting a loop or multiple edges is equal to
0 in G(n,m, k).

Proof. (i) If Γ contains a loop e then we have an action of Z /2Z by inversing this edge e.
So Γ = −Γ⇒ Γ = 0.

(ii) If Γ contains two edges e1 and e2 with the same ends then we have an action of S2

by permutations of the numbers of these edges. So Γ = −Γ⇒ Γ = 0.

In the same way we define Graphs2(n) as graphs with m and k equal 0 and without
vertex 0. According to the [5] the collection of {Graphs2(n)} is endowed with the structure
of cooperad. By considering graphs without 0 and type III (respectively type II) vertices
we obtain GraSC (respectively Gra′SC). From [7] we know that {GraSC ,Graphs2} (resp.
{Gra′SC ,Graphs2}) is endowed with the structure of 2-coloured operad.

Proposition 6. The collection of vector spaces {G,GraSC ,Gra′SC ,Graphs2} can be en-
dowed with the structure of 4-coloured operad.

The cocomposition action is given by fragmentation of the graph into subgraph clus-
ters. We demand second color action to act trivially on third and fourth component, third
– on second and fourth and fourth – on all except fourth. The action onGraSC ,Gra′SC ,Graphs2

are as in [7]. We need to show the action of operadic cocomposition on the first component.
(i) Let Γ be a graph and Γ′ be a subgraph of Γ consisted only

of l type I vertices and edges between them. Then we have a map
○1 ∶ G(m,n, k) → G(m − l + 1, n, k)⊗Graphs2(l), such that ○1(Γ) =
Γ /Γ′ ⊗ Γ′. By Γ /Γ′ we understand graph with the set of vertices
V (Γ/)V (Γ′) with type I vertex p corresponded to Γ′ and with the

set of edges E(Γ) /E(Γ′) , where the edge with one end at V (Γ′)
now has this end at the vertex p.
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(ii) We have the map ○2 ∶ G(m,n, k) → G(m − l, n − t + 1, k) ⊗
GraSC(l, t), such that ○2(Γ) = Γ /Γ′⊗Γ′, when Γ′ consists of l vertices
of type I and t ⩾ 1 vertices of type II. We demand p to be type
II in this case. Of course any type III vertex can not be included
in subgraph Γ′, because type III vertex can not be infinitesimal to
type II one.

(iii) We have the map ○3 ∶ G(m,n, k) → G(m − l, n, k − s + 1) ⊗
Gra′SC(l,0, s), such that ○3(Γ) = Γ /Γ′ ⊗ Γ′, when Γ′ consists of l
vertices of type I and s ⩾ 1 vertices of type III. We demand p to
be type III in this case. Analogously any type II vertex can not
be included in the subgraph Γ, because type II vertex can not be
infinitesimal to type III one.

(iv) We have the map ○4 ∶ G(m,n, k) → G(m − l, n − t, k − s) ⊗
G(l, t, s), such that ○4(Γ) = Γ /Γ′ ⊗ Γ′, but now Γ′ consists of l
vertices of type I, t vertices of type II and s vertices of type III.
We demand p to be 0 in this case. In all this cases we can obtain
a non-admissible graph (for example with double edges). All such
graphs we equate to 0.

3.2 Differential forms on configuration spaces

Let us consider configuration spaces with two points. We want to assign for every case one-
dimensional form ω on the appropriate configuration space. In all cases we can embed this

points in C and consider them as complex numbers x and y. Let ω+(x, y) ∶= 1
2πd (arg(

x−y
x̄−y))

and ω−(x, y) = ω+(y, x). We put ω = ω+ + ω−. There are 4 different cases:
(i) QC(2,0,0) ≃ C(2) ≃ S1, and the map of the last homeomorphism is (x, y) →

arg(y − x). Then

ω = 1

2π
d(arg(y − x) − arg(ȳ − x) + arg(x − y) − arg(x̄ − y)) =

= 1

2π
d(arg(y − x) − arg(ȳ − x) + arg(y − x) + π + arg(y − x̄)) = 1

π
d(arg(y − x))

- double standard volume form on S1. One can see that ∫QC(2,0,0) ω = 2.

(ii) QC(1,1,0). Let x be a point on the line. We have a function φ+ = 1
2πarg(

y−x
ȳ−x)

measuring the hyperbolic angle between x and y in H. This function is invariant by
translation and scalar multiplication and gives an isomorphism QC(1,1,0) ≃ (0,1). One
can see that ω+ = dφ+. On the other hand ω− = 1

2πarg(
x−y
x−y) = 0. From the statement above

it is immediate then ∫QC(1,1,0) ω = 1.

(iii) QC(1,0,1). Let x be a point on the line. We have a function φ− = 1
πarg(y − x)

measuring the angle between y and x. This function is invariant by translation and scalar
multiplication and gives an isomorphism QC(1,0,1) ≃ (0,1). By the reasons in (i) we
have ω = dφ. From the statement above it is immediate then ∫QC(1,0,1) ω = 1.

(iv) QC(0,1,1). Let x be on x-axis and y on y-axis. We have a function φ =
1

2πarg(
y−x
y+x). This function is invariant by scalar multiplication and gives an isomorphism
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QC(1,0,1) ≃ (0, 1
2). We have

ω = 1

2π
d(arg(y−x)−arg(−y−x)+arg(x−y)−arg(x−y)) = 1

2π
d(arg(y−x)−arg(y+x)+π) =

= 1

2π
d(arg(y − x

y + x) + π) = dφ

From the statement above it is immediate then ∫QC(1,0,1) ω = 1
2 .

We assign to every graph Γ ∈ G(m,n, k) the differential form ωΓ ∈ Ω(QC(n,m, k)),
such that ωΓ = ∧e∈Eωe, where ωe is defined in this way. Let s and f be two ends of this
edge. We can consider projection π ∶ QC(V )→ QC(s, f), where QC(s, f) is configuration
space of two points of the same types as s and f . Let ωe ∶= π ∗ ω, where ω is defined as
above.

Let cΓ ∶= ∫QC(n,m,k) ωΓ. It is important that cΓ ≠ 0 only if

2n +m + k − 1 = dim(QC(n,m, k)) = degωΓ = ∣E(Γ)∣.

3.3 Graphs with external and internal vertices

The example of
a graph from
TwG(3,2,1) with
(4,1,1) internal
vertices.

Further we are interested in the twisted in the sense of [2] version of
G. We have a natural action of Sl,t,s ∶= Sl×St×Ss on the vector space
G(n+l,m+t, k+s) as follows. St and Ss permutate the last t (respec-
tively s) vertices of the type II (respectively III) with the sign of the
permutation. Sl permutate the last l first type vertices with trivial
sign. The twisted version of the operad {G(m,n, k)} is the collec-
tion of vector spaces {TwG(n,m, k) ∶= ∑l,t,sG(n+l,m+t, k+s)Sl,t,s}.
In this graphs we have (n,m, k) numerated vertices called exter-
nal and any amount of vertices without numeration called internal.
As the matter of fact we take the sum of all permutations of the
internal vertices. For our purposes it is convenient to use ”aug-
mented” version of twisting, i.e we prohibit internal vertices with
valency 0. The collection {TwG,TwGraSC , TwGra′SC , TwGraphs2} has induced from
{G,GraSC ,Gra′SC ,Graphs2} 4-coloured cooperadic structure.

Proposition 7. For every (n,m, k) the vector space TwG(n,m, k) has structure of com-
mutative dg-algebra.

Proof. The multiplication is constructed as usual by gluing graphs on external vertices.
Let Γ ∈ TwG(n,m, k) be a graph with (l, t, s) internal vertices and k edges. Let introduce
grading deg(Γ) = k − 2l − t − s. It is obvious that deg(Γ) + deg(Γ′) = deg(Γ ⋅ Γ′). Let us
call the graph Γ ”contractible” if Γ is connected and has at most one external vertex. Let
P (n,m, k) ⊂ TwG(n,m, k) be vector subspace generated by all ”contractible” graphs. We
have a map cΓ ∶ P (n,m, k) → R. Let us define the differential of Γ as follows. We have a
full cocomposition map ○ ∶ TwG → TwG ⊗ TwG. Let us consider the composition with

the tensor product TwG
○Ð→ TwG⊗TwG ⊗PRÐ→ TwG⊗TwG⊗P R. We have an evaluation

e ∶ TwG⊗TwG→ TwG defined as e(1⊗x) = e(x⊗1) = x and e(x⊗y) = 0 with x and y from

the augmentation ideal. We define d as the composition d ∶= TwG ○Ð→ TwG ⊗ TwG ⊗PRÐ→
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TwG ⊗ TwG ⊗P R e⊗PRÐ→ TwG ⊗ P ⊗PRÐ→ TwG. In this differential we have summands of
images of the cooperadic action with one of the tensor factors to be from P . From this
definition one can see that the differential has 5 pieces:

(i) If e is an edge and at least one of its ends is type I vertex, then we
can contract this edge with the sign. d1(Γ) = 2∑e∈Contr(Γ)(−1)eΓ /e ,
where Contr is the set of all contractible edges and (−1)e is depen-
dent on the parity of number of edge e. This piece of the differential
decrease number of internal type I vertices and edges by 1, so has
grading 1.
(ii) Let Γ′ be a subgraph with all vertices types I and II, such
that at most one of them is external (necessarily type II). Then
we can contract this subgraph to type II vertex with coefficient.
d2 = ∑Γ′ cΓ′

Γ /Γ′ , where c will be defined before the part about
twisted operad. The coefficient c is not 0 only if deg(Γ′) = −2.
Therefore this piece has grading 1.
(iii) Let Γ′ be a subgraph with all vertices types I and III, such
that at most one of them is external (necessarily type III). Then
we can contract this subgraph to type III vertex with coefficient.
d2 = ∑Γ′ cΓ′

Γ /Γ′ , where c will be defined before the part about
twisted operad. The coefficient c is not 0 only if deg(Γ′) = −2.
Therefore this piece has grading 1.
(iv) Let Γ′ be a subgraph consisting 0 and with some internal ver-
tices. All external vertices in Γ′ except 0 are prohibited. Then we
can contract this subgraph to 0 with coefficient. d4 = ∑Γ′ cΓ′

Γ /Γ′ .
The coefficient c is not 0 only if deg(Γ′) = −1. Therefore this piece
has grading 1.
(v) Let Γ′ be a subgraph consisting all external vertices. Then we
can reduce all to this subgraph. d5 = ∑Γ′ −cΓ/Γ′

Γ′. The coefficient c

is not 0 only if deg(Γ /Γ′ ) = −1. Therefore this piece has grading 1.
The whole differential d = d1 +d2 +d3 +d4 +d5 has grading 1 because
of all his pieces have grading 1.

Remark 1. After applying differential to our graph Γ we can obtain a graph with multiple
edges or edges between points on one axis. We equate such graphs to 0.

Corollary 3. {TwG,TwGraSC , TwGra′SC , TwGraphs2} is 4-coloured dg-Hopf cooperad.

Proof. The structure of dg-commutative algebra should be shown for every component of
the cooperad. We have done it for the first component in the Proposition 7. For all other
components there are well-known results, we refer to [5] and [7].

3.4 Lie decorated graphs

Let Gr1 be the vector space generated by graphs with n external vertices and m edges
to type II vertices. Our goal in this section is to change the basis of the Gr1. More
specifically we generate the vector space Gr2 by graphs of new basis and prove that this
two vector spaces are isomorphic. Let us introduce the notion of Lie decorated graph.
Now we can consider Lie brackets on the points on one axis, such that in any Lie cluster
we have at most one external vertex. For the Lie decorated graph we associate a sum of
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usual graphs as follows. Between two vertices of a cluster we cannot have any external
vertices except consisting in this Lie cluster. Now we have two types of internal vertices,
free (without cluster) and fixed (in cluster). For a fixed vertices we have the sum of two
graphs (first with first vertex (or maybe bracket) before second one from this Lie bracket
and second - after). For every case we take a sum of all graphs obtained in the same way.
For a free one we have the sum of graphs, obtained by consecutive transpositions this
vertex with other with the sign. It is easier to understand with an example.

Let
us
de-
fine
Gr2

as
the
vec-
tor
space
gen-
er-
ated
by

Let us define Gr2 as the vector space generated by all Lie decorated graphs with n
external vertices and m edges to type II vertices.

Proposition 8. Vector spaces Gr1 and Gr2 are isomorphic. Therefore Lie decorated
graphs are another basis of the space of graphs.

Proof. Let V be m-dimensional vector space, generated by edges v1, . . . , vm to type II
vertices. We can associate to the graph Γ ∈ Gr1 with k internal vertices an element
of the T k+n(S ⋅V )polylin, where index polylin means that the product of all elements is
v1v2 . . . vm, in the following way. Let i-th vertex on the line has edges vi1 , vi2 , . . . , vil . We
associate to this vertex an element xi ∶= vi1vi2 . . . vil ∈ S ⋅(V ). If i-th vertex is zero-valent
we associate to it an element 1 ∈ S ⋅V . To the graph we associate x1 ⊗ x2 ⊗ . . .⊗ vk+n. To
the element of T k+n(S ⋅V )polylin we can associate graph in the same way. Therefore we
have Gr1 ≃ ⊕k⩾0T k+n(S ⋅V )polylin. Let us first consider the case n = 0, when all vertices are
internal. We have the natural actions of Sk on Gr1 by permutating vertices. Then we
have Gr1 ≃ ⊕k⩾0T k(S ⋅V )polylin ≃ ⊕k⩾0T k(S ⋅V )polylin ⊗k[Sk] k[Sk] = ⊕k⩾0T k(S ⋅V )polylin ⊗k[Sk]
Assoc(k).
Lemma 2. Operad Pois governing Poison algebras is associated graded operad to operad
Assoc governing associative algebras.

Proof. We have a canonical map π ∶ Assoc→ Com, induced from the projections k[Sn]→
k on the space of n-ary operations. Let I be the kernel of this map. We have a natural
filtration F0 ⊃ F1 ⊃ F2on Assoc, F0 ∶= Assoc, F1 ∶= I, F2 ∶= I2, . . .. Let us consider the
graded operad associated to this filtration. gr(Assoc) ∶= F0 /F1

⊕ F1 /F2
⊕ . . .. Now

we claim that the induced product x ⋅ y ∶ Fi /Fi+1
× Fj /Fj+1

→ Fi+j /Fi+j+1
becomes

commutative. The ideal I is generated by the bracket [x, y] ∶= xy − yx. And if x ∈
Fi, y ∈ Fj we have [x, y] ∈ Fi+j+1. Therefore x ⋅ y − y ⋅ x ∈ Fi+j+1. On the other hand
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{x, y} = x ⋅ y − y ⋅ x ∈ Fi+j+1 /Fi+j+2
defines Poisson bracket. One can check the anti-

commutativity, Jacobi and Leibniz identities. So we have a map Pois → gr(Assoc).
The associative product can be uniquely determined from induced commutative one and
Poisson bracket, so this map is surjection. From equality of dimensions of Assoc(n) and
Pois(n) follows that gr(Assoc) = Pois.

Therefore as vector spaces:

Gr1 ≃ ⊕k⩾0T
k(S ⋅V )polylin ⊗k[Sk] Assoc(k) ≃ ⊕k⩾0T

k(S ⋅V )polylin ⊗k[Sk] Pois(k) ≃ Gr2.

The last isomorphism is clear, because ⊗k[Sk]Pois(k) is the same as endowing graphs with
poison bracket on them.

Now assume that graph has n external vertices of type II. Then we have a natural
action of Sk × Sn by permutating internal and external vertices. Therefore

Gr1 ≃ ⊕k⩾0T
k+n(S ⋅V )polylin⊗k(Sk×Sn)k(Sk+n) = ⊕k⩾0T

k+n(S ⋅V )polylin⊗k(Sk×Sn)Assoc(k + n)
≃ ⊕k⩾0T

k+n(S ⋅V )polylin⊗k(Sk×Sn)Pois(k + n) = ⊕k⩾0T
k+n(S ⋅V )polylin⊗k(Sk)Pois(k + n)Sn .

We take coinvariants to the action of Sn and therefore the poisson bracket on external
vertices is identically 0. Therefore right hand side corresponds to Poisson bracket on
graphs such that any two external points are in different Lie clusters. This graphs generate
Gr2.

We can change basises in such way on both axes.

3.5 Admissible graphs

Definition 3. The graph is called externally disconnected if there is a connected subgraph
consisting only of internal vertices such that all vertices of types II and III are free. We
denote vector space, generated by all externally disconnected graphs Γ ∈ G(n,m, k) as
N(n,m, k).
Proposition 9. For every externally disconnected graph Γ with at least one external
vertex we have cΓ = 0.

Proof. Let Γ′ ⊂ Γ be externally disconnected connected component. Then Γ = Γ′ ∪Γ” and
Γ” is not empty.

cΓ = ∫
QC(V (Γ))

ωΓ = ∫
QC(V (Γ))→QC(V (Γ′))

∫
QC(V (Γ′))

ωΓ′ωΓ” =

= ∫
QC(V (Γ))→QC(V (Γ′))

ωΓ”∫
QC(V (Γ′))

ωΓ′ = cΓ′ ∫
QC(V (Γ))→QC(V (Γ′))

ωΓ”.

cΓ = ∫
QC(V (Γ))

ωΓ = ∫
QC(V (Γ))→QC(V (Γ”))

∫
QC(V (Γ”))

ωΓ′ωΓ” =

= ∫
QC(V (Γ))→QC(V (Γ”))

ωΓ′ ∫
QC(V (Γ”))

ωΓ” = cΓ”∫
QC(V (Γ))→QC(V (Γ”))

ωΓ′ .

From the formula above coefficient cΓ is not 0 only if both ωΓ′ is top form on the
QC(V (Γ′)) and ωΓ” is top form on QC(V (Γ′)). Therefore

deg(ωΓ) = deg(ωΓ′)+deg(ωΓ”) =dim(QC(V (Γ′)))+dim(QC(V (Γ”))) =dim(QC(V (Γ)))−1.

So ωΓ is not top form and cΓ = 0.
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Proposition 10. The vector space N(n,m, k) is an ideal in G(n,m, k) closed under
differential.

Proof. The multiplication of two graphs is constructed by gluing graphs. Therefore if
Γ′ ⊂ Γ1 is externally disconnected connected component then Γ′ ⊂ Γ1 ⋅Γ2 will be externally
disconnected connected component too.

Let Γ ∈ N(n,m, k) be externally disconnected graph.
When we contract an edge between two type I vertices the resulting graph is externally

disconnected.
Every other summand in the differential dΓ has form cΓ1Γ2. It is immediate that Γ1 or

Γ2 is externally disconnected. If Γ2 is externally disconnected then this summand belong
to N(n,m, k). If Γ1 is externally disconnected then it has external vertices because Γ has
and cΓ1 = 0 by Proposition 9.

Let us recall the notion of non-admissible graphs on GraSC (and therefore Gra′SC) and
Graphs2 from [7] and [5] respectively. One can see that this vector spaces are obtained
from the restriction N on appropriate graphs. We denote this sets as NSC , N ′

SC and N2

respectively.

Proposition 11. The collection Nall ∶= {N,NSC ,N ′
SC ,N2} is cooperadic ideal in Twall ∶=

{TwG,TwGraSC , TwGra′SC , TwGraphs2}, namely ○(Nall) ⊂ Nall ⊗ Twall + Twall ⊗Nall.

Proof. For all components without first one it is well known fact and we refer to [5]
and [7]. It is enough to prove this fact for N ⊂ G. Let Γ ∈ N(n,m, k) be externally
disconnected graph and Γ′ ⊂ Γ be its externally disconnected connected component. Every
cocomposition action sends Γ to the product Γ1 ×Γ2, such that intersection of Γ′ with at
least one of this graphs is not empty set. Then this intersection is externally disconnected
connected component in this graph.

Corollary 4. Factors AQC ∶= TwG /N , ASC ∶= TwGraSC /NSC
, A′

SC ∶= TwGra′SC /N ′
SC

and A2 ∶= TwGraphs2 /N2
are well defined and induces from the Twall the structure of

4-coloured dg-Hopf cooperad on the collection A ∶= {AQC ,ASC ,A′
SC ,A2}.

4 Kontsevich space integral

Our goal is to construct the map I from the TwG(n,m, k) to the semi-algebraic forms
on QC(n,m, k). Let Γ ∈ G(n + l,m + t, k + s) be a graph represented an element of
TwG(n,m, k). Then we have a natural projection π ∶ QC(n+ l,m+t, k+s)→ QC(n,m, k)
forgetting all internal points. Let I(Γ) ∶= π∗ωΓ. It is useful to rewrite I(Γ) as the integral
along the fiber. I(Γ) ∶= ∫QC(n+l,m+t,k+s)→QC(n,m,k) ωΓ.

Theorem 1. The map I commutes with the 4-coloured cooperad structures on {A} and
{Ω}.

Proof. The proof is parallel to the [5, Section 9.5].

Proposition 12. I is the chain map.

Proof. Let Γ ∈ G(n + l,m + t, k + s) be a graph represented an element of D(n,m, k).
I(dΓ) = ∑5

i=1 I(diΓ). On the other side we have dI(Γ) = d ∫QC(n+l,m+t,k+s)→QC(n,m,k) ωΓ =
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∫QCδ(n+l,m+t,k+s)→QC(n,m,k)
ωΓ by the Stokes formula. We have from statement above a

decomposition of QC
δ(n+ l,m+t, k+s). So dI(Γ) = ∑○

j
i
∫QC(U)×QC(W )→QC(n,m,k) ωΓ, where

○ji is ”good” partial composition and U,W are defined as in statement above. Let us
consider three cases:

(i) A ⊂W

∫
QC(U)×QC(W )→QC(n,m,k)

ωΓ = ∫
QC(U)×QC(W )→QC(W )

∫
QC(W )→QC(n,m,k)

ωΓ =

= cΓ/Γ′ ∫QC(W )→QC(n,m,k)
ωΓ′ = cΓ/Γ′

I(Γ′)

by the Fubini theorem. This summand is a part of I(d5Γ).
(ii) j < 4 and ∣A ∩W ∣ ⩽ 1

∫
QC(U)×QC(W )→QC(n,m,k)

ωΓ = ∫
QC(U)×QC(W )→QC(U)

∫
QC(U)→QC(n,m,k)

ωΓ =

= cΓ′ ∫
QC(U)→QC(n,m,k)

ωΓ/Γ′
= cΓ′I(Γ /Γ′ )

by the Fubini theorem. This summand is a part of I(dΓ)with use only of d1+d2+d3. This
is obvious from the definition to the cases, when W consist at least 1 not type I vertex.
In this case we refer to the [5, Section 9.4]

(iii) j = 4, A ∩W = ∅

∫
QC(U)×QC(W )→QC(n,m,k)

ωΓ = ∫
QC(U)×QC(W )→QC(U)

∫
QC(U)→QC(n,m,k)

ωΓ =

= cΓ′ ∫
QC(U)→QC(n,m,k)

ωΓ/Γ′
= cΓ′I(Γ /Γ′ )

by the Fubini theorem. This summand is a part of I(d4Γ).
On the other hand, to all summands in I(dΓ) we can assign such ”good” operadic

composition that ∫QC(U)×QC(W )→QC(n,m,k) ωΓ gives our summand. Therefore I(dΓ) = dI(Γ)

Proposition 13. The map I is the map of algebras, i.e. commute with multiplications.

Proof. The proof is described in the [5, Section 9.2].

Proposition 14. The map I vanishes on N .

Proof. We refer to [5] and [7] for all components except first one. Let Γ ∈ N(n,m, k)
be externally disconnected graph and Γ′ ⊂ Γ be its externally disconnected connected
component. Then Γ = Γ1 ⋅Γ2, where Γ1 is obtained from Γ′ by adding all external vertices
without edges. We know that I is morphism of algebras. Therefore it is enough to prove
that I(Γ1) = 0 Let A be the set of external vertices, V ∶= V (Γ1), W ∶= V (Γ′) = (l, t, s).
Then map π ∶ QC(V )→ QC(A) factors as QC(V ) pÐ→ QC(W )×QC(A) qÐ→ QC(A) where
q is the projection on the second factor. We know that dim QC(W ) = 2l + t + s − 1 and
immediately dim (q−1(x)) = 2l + t + s − 1. On the other side dim QC(V ) = 2(n + l) +m +
t + k + s − 1 and dim QC(A) = 2n +m + k − 1. Therefore dim (π−1(x)) = 2l + t + s >dim
(q−1(x)). Now we refer to the proposition 8.14 in ”Real homotopy theory of semialgebraic
sets”.
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As a consequence of the statements above we have well defined map I ∶ A → Ω,
compatible with the 4-coloured dg-Hopf cooperad structure.

Theorem 2. The map I ∶ A→ Ω is quasi-isomorphism.

Proof. It is enough to prove it for the dual operad. We know that this map is quasi-
isomorphism for all components of operad except for A(n,m, k)∗. We devote next section
to the computation of cohomology of this component of the operad.

5 Cohomology of graphs

5.1 Associated spectral sequence

Let us consider the filtration on graphs from A(n,m, k) by the number of internal type
I vertices. We have the associated spectral sequence Ep,q. This spectral sequence is
bounded above and on the left, so this spectral sequence converges to cohomology of
A(n,m, k). On the 0 sheet we have the differential not changed the quantity of internal
type I vertices. Any piece of the differential does not contain external vertices, so type I
vertices are not involved in d0.

Lemma 3. The first sheet E1
p,q is generated by graphs Γ satisfying two following condi-

tions:
(i) All internal vertices of types II and III are univalent.
(ii) All external vertices of types II and III have valency 0.

Proof. Our goal is to compute cohomology of (A(n,m, k), d0). For this purposes we
consider another filtration by the number of internal type II vertices and the associated
spectral sequence Fp,q. The differential d00 on F 0

p,q is contracting two points of type III
to one. Due to [7, Section 5] on the first sheet we have the conditions of the lemma
for types III vertices. For the computation d01 on F 1

p,q we consider the filtration by the
number of all internal vertices and consider the differential contracting two points of type
II. Because of the same argument the cohomology satisfies conditions of the lemma. For
the completeness of the proof we want to sketch a proof of the used statement from [7].

Proposition 15. The cohomology of A(n,m, k) with the differential contracting 2 ver-
tices of type II, at least one of which is internal, to one is generated by graphs Γ satisfying
two following conditions:

(i) All internal vertices of type II are univalent.
(ii) All external vertices of type II have valency 0.

Proof. We firstly give a proof for the case when all vertices of type II are internal.
Let us consider only graphs with m edges ending at points of type II. We fix an order

on this edges and denote as V vector space generated by edges v1, . . . , vm. We denote
by S+V the augmentated algebra, associated to S●V , i.e. the kernel of the augmentation
map S●V → k. For edges vi1 , vi2 , . . . , vik incoming in a vertex we associate an element
vi1vi2 . . . vik ∈ SkV . For a graph Γ with m points of type II we assign an element of
[S+V ⊗ S+V ⊗ . . . ⊗ S+V ]polylin, where supscript polylin means that the product of all
elements is v1v2 . . . vm. Let us look on the action of differential, contracting two consequent
points. If we have element x1 ∈ S+V for the first of them and x2 ∈ S+V for the second,
the resulting element is x1x2 ∈ S+V . So we have a differential S+V ⊗ S+V ⊗ . . .⊗ S+V →
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S+V ⊗ S+V ⊗ . . . ⊗ S+V , acting as Hochschild differential and S+V ⊗ S+V ⊗ . . . ⊗ S+V
is complex. It is immediate that [S+V ⊗ S+V ⊗ . . . ⊗ S+V ]polylin is subcomplex. Thus
to find cohomology on first sheet of the associated spectral sequence is the same as to
find homology of the complex, obtained from [S+V ⊗ S+V ⊗ . . . ⊗ S+V ]polylin by taking
coinvariants of Sm. The functor of taking coinvariants of finite group commutes with
homology functor. Therefore it is enough to find homology of [S+V ⊗S+V ⊗. . .⊗S+V ]polylin.
It is subcomplex in Ck = S+V ⊗ S+V ⊗ . . .⊗ S+V . We can consider syzygy degree on this
complex, deg(x1 ⊗x2 ⊗ . . .⊗xk) = ∑ki=1 deg(xi)− k. The differential increase grading by 1.
This cochain complex is called bar-resolution B(S●V ).
Proposition 16. Koszul criterion. Let A be Koszul dual algebra and A!′ be its Koszul
dual coalgebra. Then the natural embedding i ∶ A!′ → BA is quasi-isomorphism and the
image of i has syzygy degree 0.

Proof. We refer to [6, Theorem 3.4.6].

It is well known (see [6, Example 3.2.5]) that S●V and Λ●V are Koszul dual algebras.
Then cohomology of bar-resolution are trivial except forH0(BS●V ) that is equal to shifted
Λ●V in this part. Cohomology of our complex is trivial except for H0 ≃ Λ●Vpolylin ≃ k.
Note that syzygy degree of x1 ⊗ x2 ⊗ . . .⊗ xn is equal to 0 only if deg(xi) = 1. Therefore
every vertex of type II is univalent. Cohomology elements are represented by the sum
over all permutations of graphs with n internal univalent vertices.

Now we are ready to proof the proposition in general case. Let us consider vector
space generated by all graphs with n external vertices and m edges ending at points of
type II. It is a subcomplex with respect to d0. Let us consider a filtration by the sum
of valences of external vertices and the associated spectral sequence. It is bounded from
left and above, so this spectral sequence converges to cohomology of this complex.

On the 0-th sheet of the associated spectral sequence we have a differential contracting
two internal vertices. From the fact proved above we have that on the 1-st sheet all internal
vertices are univalent.

On the 1-st sheet we have a differential, contracting one external and univalent internal
vertices to external one. We want to prove that cohomology of the corresponding complex
is represented by graphs with all external vertices of valence 0. Let us endow this complex
with a grading, induced by filtration and denote the vector space, generated by graphs
with the sum of valence of all external vertices k by Ak. We see that the differential
reduces grading by 1. Our goal is to show that the cohomology of this complex is trivial
in all parts except for H0. Let us consider graphs Γi, obtained by Γ by replacing i-th
external vertex by a Lie bracket with one internal univalent vertex. Then dΓi = dΓ +Xi,
where Xi is the sum of graphs with the same vertices as Γ, but with the valency of one of
external vertices is increased by one. One can note that Xi are linearly independent and
therefore all graphs obtained from Γ by increasing valency of one external vertex by one
are linear combination of Xi. Let us consider a sum of graphs G = ∑Gi representing an
element of Hk, k > 0 and let Y = ∑Yi be a sum of graphs, obtained from Yi by reducing
valency of one of external vertices by one. We can do the described above operation for
every Yi and obtain graphs Yi,j. Then for Zi,j = ∑t≠i Yi + Yi,j we have dZi,j = dY +Xi,j.
Since all Xi,j are linearly independent we have G = ∑Zi,j. Therefore H>0 = 0 and on the
2-nd sheet of the associated spectral sequence all ecternal vertices have valency 0.
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Let us look at the E1
p,q. Here we have the differential, reduced the number of internal

type I vertices by 1. d1 consists of contracting of all edges, such that one of the ends is
internal type I vertex and the piece of the fifth part of the differential with Γ /Γ′ consists
from 0 and one internal type I vertex and of piece of the differential that put down internal
vertex of the type I on the line (i.e. makes this vertex type II or III).

5.2 String complexes

Definition 4. Let s and t be two vertices. By Str0 we denote the graph consisting of s,
t and the edge e between them. Strk is obtained from Strk−1 by replacing first edge (let
it be from s to t′) by internal type I vertex k and edges from s to k and from k to t′. Is
the second edge is prohibited for Str1 then we inverse it. The collection {Strk} for all k
is called string from s to t.

Let d1 be the piece of the differential d on A(n,m, k), reducing the number of internal
type I vertices by 1. We have three pieces of the differential on string complex:

(i) Contracting the edge between two vertices;
(ii) cΓ/Γ′

Γ′, where Γ is obtained from Γ′ by adding one vertex and an edge from it;

(iii) If at least one of the ends of string is of type I then we can put down this vertex
on the line.

Proposition 17. d2
1(Strk) = 0.

Proof. d2
1(Strk) decomposes as the sum of applying different pieces of the differential. We

can think about two parts of piece (ii) as contracting 0-th and k + 2-th edges. Then if we
apply only (i) and (ii) pieces then the sum is zero, because we contract i-th edge after j-th
and j-th after i-th with different signs. If we can apply piece (iii) twice, than the same
argument gives 0. It is enough to consider the case when one applying of the differential
put s on the line (the same for f). For contracting the edge not to s we have that this
two pieces of the differential commute and cancel each other. All other summands are:

(i) Contracting k + 1-th edge with coefficient 2, after that putting vertex f down;
(ii) Contracting k + 2-th edge with coefficient 1, after that putting vertex f down;
(iii) Putting vertex f down and contracting k + 1-th edge with the coefficient 1.
By our sign conventions the sum of all pieces is 0.

Definition 5. The complex generated by {Strk} and all differentials with the differential
d1 is called string complex.

Our goal is to compute the cohomology of string complexes for different types of s and
t. (i) Points s and t belong to different axes.

Proposition 18. d1(Stri2k+1) = 2Stri2k and d1(Stri2k) = 0 for k ⩾ 0.

Proof. Each edge between type I vertices is contracted with the coefficient 2. We have
two pieces with coefficient 1 corresponding to the first edge and to the last edge (2 and 3
pieces of d). The piece (iii) of the differential does not act in this case.

d(Strik) = −Strik−1 + 2Strik−1 − . . . + (−1)k2Strik−1 + Strik−1 = 2(1 + (−1)k)Strik−1.

Therefore this string complex is acyclic.
(ii) Both points belong to one axis.
The only difference to the (i) is that Strii0 = 0 and therefore cohomology is one-

dimensional and spanned by Strii1 .
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5.3 On the first sheet of the associated spectral sequence

Lemma 4. Let X be a sum of graphs Γ consisting at least one edge between type I and
type II vertices, such that d1X = 0, then X = dY +X ′ for some Y ∈ A(n,m, k) and X ′

represents an element from the cohomology of the string complex between two vertices
on the axes.

Proof. Let us introduce the operator h ∶ A(n,m, k)→ A(n,m, k).
If Γ does not consist any edge between type I and type II
vertices then hΓ ∶= 0. Let p be the leftmost II type vertex
connected by edge to a type I one. From all such edges
we can take the leftmost e. If the source of e is not internal
bivalent type I vertex then let hΓ be a graph, obtained from
Γ by dividing this edge into 2 parts by adding internal type
I vertex on it. If the source of e is internal bivalent type I
vertex then we repeat the operation for this vertex. Let us consider the filtration F of
the length of the string started from the considered leftmost vertex.

Remark 2. Elements in A(n,m, k) are coinvariants with respect to the action of symmet-
ric group by permutations of internal vertices. So the graph in A(n,m, k) is the algebraic
sum of the graphs differed by this permutation. For each of them the notion of leftmost
is correctly defined. So it is correctly defined for the graph in A(n,m, k).

Proposition 19. Let Γ ∈ F k(A). Then d1(hΓ) + hd1Γ = ±Γ + dY + Γ′ with Γ′ ∈ F k+1(A).

Proof. Let Γ be the graph with the length of the string of bivalent internal vertices k. Let
us denote this string as Str(k) and the remaining graph with the last point of the string
Γ′. Let v be the last vertex of Str(k).

(i) If v is vertex on one of the axes then we obtain an element Strik or Striik from string
complex. We drop upperscript for this case. hStrk = Strk+1 and dStrk = 0.

From the subsection about string complexes we have d1(hStrk) + hd1Strk = 2Strk =
Strk + d(1

2Strk+1) except for k = 1 and two points are on one axis. In this case we have
the cohomology element Strii1 .

(ii) If v is type I vertex.
Recall the clasification of the pieces of the differential from the subsection about string

complexes. We know that valency of v is more than one, therefore pieces (ii) and (iii) does
not act on the string. We have d1(Γ) = d(Str(k))Γ′ + d(Γ)Str(k) = (−Strk−1 + 2Strk−1 −
. . . + (−1)k−1Strk−1)Γ′ +X = ±Strk−1Γ′ +X with X ∈ F k(A).

hd1Γ = ±hStr(k − 1)Γ′ + hX = ±Str(k)Γ′ + hX.
d1(hΓ) = d1(Str(k + 1) ⋅ Γ′) = ∓Str(k)Γ′ + Str(k + 1)dΓ′.
Then d1(hΓ) + hd1Γ = hX + Str(k + 1)dΓ′ ∈ F k+1(A).

One can see that the number of edges is not changed with this operations. So from
some m we have Fm(M) is empty. But elements X, X ′, . . ., X(m) are homological.
Therefore X is the sum of a appropriate string and dY .

The same argument can be applied in the proof of the analogous statement.

Lemma 5. Let X be a sum of graphs Γ consisting at least one edge between type I and
type III vertices and 0, such that d1X = 0, X = dY +X ′ for some Y ∈ A(n,m, k) and X ′

an element from a string complex between two vertices on the axes.
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5.4 The ∞ sheet of the associated spectral sequence

The vector space C generated by all graphs with at least one edge between type I and
not type I vertices is closed with respect to the differential d1. The vector space DC
generated by all graphs without any edges between type I and not type I vertices is
closed with respect to the differential d1 too. Therefore E1

p,q = C ⊕DC as complex. And
two lemmas above claim that the contribution of C to the cohomology is trivial except
cohomology of string complexes between points on the axes. And in all such graphs we
have a component of points of only type I with all internal vertices valency at least 3.
Due to [5] the cohomology of this space with differential d1 is equal to H∗(C(n)).

Therefore all elements of E3
p,q are represented as graphs Γ such that all external vertices

types II and III have valency 0, all internal vertices type II and III are univalent and
paired by strings of length one with points of the same type and d1Γ = 0, where d1 acts
on type I vertices by contracting an edge. The differential d2 reduces the number of
internal type I vertices by 2. One can see that d2 contracts remaining strings with the
coefficient cStr1 = 1. Therefore this spectral sequence converges on the third sheet and
the resulting graphs contain internal points only of type I and external points types II,
III and 0 only valency 0. So the cohomology of graphs can be identified with m! ⊗
k!⊗H∗(C(n)) ≃H∗(C1(m))⊗H∗(C1(k))⊗H∗(C(n)) ≃H∗(QC(n,m, k)) and map I is
quasi-isomorphism.

6 A∞ framework

6.1 A∞ categories

Let us recall key moments from [1, Sections 2,3,4]

Definition 6. A small finite A∞ category is a set of data:
(i) the finite set I (objects);
(ii) the element of GrV ectI×Ik A, i.e. A = {Aa,b}, (a, b) ∈ I × I (morphisms);
(iii) The codifferential dA on TI(A[1]).

Definition 7. A∞ category with the set of objects of one element is called A∞ algebra.

Proposition 20. Let A,B be two A∞ algebras and K – A∞ −A −B−bimodule. Let us
consider Ca,a = A, Ca,b = K, Cb,a = 0 and Cb,b = B. Then C may be endowed with the
structure of A∞ category.

Proof. We need to define a codifferential dA on T{a,b}(C[1]). This codifferential is uniquely
determined by its Taylor components dna ∶ A⊗n → A, dnb ∶ B⊗m → B and dn,ma,b ∶ A⊗n ⊗K ⊗
B⊗m → K. We take da = dA and db = dB – codifferentials on A and B respectively. For
dn,mk we choose the morphism dn,m,K ∶ A⊗n ⊗K ⊗B⊗m →K, defined bimodule structure on
K. For defined in such way dC one can check that d2

C = 0.

Following [1] we denote this category as Cat∞(A,B,K).

6.2 The Hochshild cochain complex for A∞ category

Definition 8. Let us consider the space of I × I coderivations of the tensor algebra
CC(A) ∶= CoderI×I(TI(A[1])) = HomI×I(TI(A[1],A[1]). This space with natural grad-
ing is called Hochshild cochain complex of the A∞ category A.
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On the space of coderivations we have natural Lie bracket [●, ●]. For our case we
call it Gerstenhaber bracket. One can see that CC(A) is actually cochain complex with
CCn(A) = Cn(A,A) = HomI×I(A[1]⊗n,A[1]) and differential d as in usual Hochshild
complex. With respect to bracket [●, ●] we may choose the Maurer-Cartan element γ, i.e.
[γ, γ] = 0 and differential dγ = [γ, ●] and obtain the structure of dg-Lie algebra on CC(A).
The usual Hochshild differential is obtained with γ - A∞ structure in A.

Let us consider the case of C = Cat∞(A,B,K). Then Hochshild cochain com-
plex has a form CCn(C) = ⊕p+q=nHomq(A⊗p,A) ⊕ ⊕p+q+r=nHomr(A⊗p ⊗K ⊗ B⊗q,K) ⊕
⊕p+q=nHomq(B⊗p,B). Let us denote the second summand as Cn(A,B,K). Let us choose
the Maurer-Cartan element γ = dA + dK + dB and an element φ = φA + φK + φB of
CCn(C). Then the differential dγφ = [dA, φA] + dK{φA} + [γ,φK] + dK{φB} + [dB, φB],
where P{Q1,Q2, . . . ,Qn} is usual brace operation on Hochshild complex. One can see
that C●(A,B,K) is subcomplex in CC(Cat∞(A,B,K)).

We have two natural projections pA ∶ CC(Cat∞(A,B,K))→ CC(A) and
pB ∶ CC(Cat∞(A,B,K)) → CC(B). It is immediate that both of them are chain

maps.

Proposition 21. Maps pA and pB are L∞ maps.

Proof. We refer to [1].

7 Formality morphisms

7.1 The framework of the research

Let us consider X = Rd and two subspaces U,V ⊂X, such that X = U ∩V ⊕U ∩V �⊕U� ∩
V ⊕ U� ∩ V � and choose the basis x1, x2, . . . , xd compatible with this decomposition. To
every pair of U and V we associate three graded vector spaces, namely

A = Γ(U,∧(NU)) = S(U∗)⊗ ∧(X/U) = S(U∗)⊗ ∧(U⊥ ∩ V )⊗ ∧(U + V )⊥,
B = Γ(V,∧(NV )) = S(V ∗)⊗ ∧(X/V ) = S(V ∗)⊗ ∧(U ∩ V ⊥)⊗ ∧(U + V )⊥,
K = Γ(U ∩ V,∧ (TX/(TU +TV ))) = S((U ∩ V )∗)⊗ ∧(U + V )⊥,

Proposition 22. The set of graded vector spaces A,B,K may be endowed with the
codifferential and generates an A∞ category Cat∞(A,B,K).

Proof. We endow A and B with the trivial A∞ structure (every associative algebra is an
A∞ algebra in natural way). For the K we define A∞ −A −B−bimodule structure by its
Taylor components dn,mK use graphs Gr(0, n,m).

Let Γ ∈ Gr(0, n,m) be a graph and I ∶ E(Γ) → [1, . . . , d] be a labeling of the edges.
We assign to Γ a morphism OK

Γ ∶ A⊗n ⊗ K ⊗ B⊗m → K. Let us choose the element
a1∣a2∣ . . . ∣an∣k∣b1∣ . . . ∣bm. It is convenient to renumerate vertices, 1, . . . , n - vertices of II
tpe with respect to the order on them, n + 1 - vertex 0 and n + 2, . . . , n +m + 1 - vertices
of type III with respect to their order. Let φi, i ∈ {1, . . . , n + m + 1} be an element,
corresponded to i-th vertex, i.e. ai for i ⩽ n, k for n + 1 and bi for i > n + 1. Let e be the
edge in Γ. For every edge e with source i and target j we change φi by < φi, dxI(e) > and
φj by δI(e)φi. After that we multiplicate all φi as polyvector fields and project on K. We
call the obtained map OI ∶ A⊗n ⊗K ⊗ B⊗m → K and set OK

Γ (a1∣a2∣ . . . ∣an∣k∣b1∣ . . . ∣bm) =
cΓ∑I OI(a1∣a2∣ . . . ∣an∣k∣b1∣ . . . ∣bm). By simmetrization we can consider the map OΓ for
Γ ∈ G(0, n,m).
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Proposition 23. The Taylor components dn,mK (a1∣ . . . ∣an∣k∣b1∣ . . . ∣bm) = ∑Γ∈G(0,n,m)OΓ de-
fine A∞ − A − B−bimodule structure on K, coincides up to coefficient with the one in
[1].

Proof. Tf we prove the coincidence up to coefficient of dn,mK in our construction and in
the one of [1] the proof of the first part of statement will follow from [1, Proposition
6.5]. Let J ∶= {1,2, . . . , d} and J1, J2 ⊂ I subsets, corresponding to the basis of U and V
respectively. For every L ⊂ J we write L� for J − L and τL for the sum of operations,
described for every edge e in the previous section for all I ∶ E(Γ)→ L, i.e.

τLe (φ1 ⊗ φ2 ⊗ . . .⊗ φi ⊗ . . .⊗ φj ⊗ . . .⊗ φn+m+1) =
=∑
k∈L

φ1 ⊗ φ2 ⊗ . . .⊗ < φi, dxk > ⊗ . . .⊗ δxkφj ⊗ . . .⊗ φn+m+1.

One can see that OK
Γ = cΓ∏e∈E(Γ) τ

J
e . In the study of dn,mK we are interested only in edges

between vertices on two different axes.

Lemma 6. If s is vertex of type II and t of type III and e an edge from s to t then τJe =
τ
J2∩J

�

1
e and ωe = 1

2π ∗ ω−,+, where ω+,− = 1
2πd(arg(

(u−v)(u−v̄)
(u+v̄)(u+v))) is propagator on QC(0,1,1)

and π is projection on this space.

Proof. For the first part let us note that < φi, dxk >≠ 0 only if x ∈ J�1 , because we can
contract only vector fields with 1-forms. Therefore in S(U∗) ⊗ Λ(U�) we are interested
only in skew-symmetric part.

We can differentiate along δxk only symmetric part, so we are interested only in S(V ∗)
for point f . Therefore this operator gives not 0 only for k ∈ J2 ∩ J�1 and τJe = τJ2∩J

�

1
e .

To prove second part we should rewrite mentioned propagator for our case.

ω−,+(u, v) = 1

2π
d(arg((u − v)(u − v̄)(u + v̄)(u + v))) =

1

π
d(arg((u − v)(u + v) = 2ωe

Lemma 7. If s is vertex of type III and t of type II and e an edge from s to t then τJe =
τ
J1∩J

�

2
e and ωe = 1

2π ∗ ω+,−, where ω+,− = 1
2πd(arg(

(u−v)(u+v̄)
(u−v̄)(u+v))) is propagator on QC(0,1,1)

and π is projection on this space.

Proof. The proof is parallel to the one of lemma 7.

Let us denote corresponding to [1] operators and differential forms as ω′e, τ
′
e and O′

Γ.

OK
Γ = cΓ ∏

e∈E(Γ)

τJe = ∫
Q̄C(n,m,k

∏
e∈E(Γ)

ωeτ
J
e = 1

2∣E(Γ)∣ ∫Q̄C(n,m,k
∏

e∈E(Γ)

ω′eτ
′
e = 1

2∣E(Γ)∣
O′

Γ.

Now we can state the main result of this work.

Theorem 3. There exists a L∞ quasi-isomorphism U ∶ Tpoly → CC●(Cat∞(A,B,K)) and
this quasi-isomorphism U up to homotopy can be extended to G∞ quasi-isomorphism.
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7.2 L∞ quasi-isomorphism

The main goal of this section is to give explicit construction of the morphism U and prove
that U is L∞ quasi-isomorphism. We want to construct three L∞ quasi-isomorphisms
UA ∶ Tpoly → CC●(A), UB ∶ Tpoly → CC●(B) and UK ∶ Tpoly → C●(A,B,K). Then U =
UA +UB +UK is a L∞ quasi-isomorphism between Tpoly and CC●(Cat∞(A,B,K)).

Let us define UA in the following way. Let H(n,m) be the space generated by graphs
with n type I vertices and m type II vertices with the same relations as in the definition
of Gr(n,m, k). Let Γ ∈ H(n,m) be a graph and I ∶ E(Γ) → {1, . . . , d} - labeling of the
edges. We assign to this pair (Γ, I) a map OI ∶ T⊗n

poly → Hom(A⊗m,A) in the following
way. For element γ1 ⊗ . . .⊗ γn ∈ T⊗n

poly we assign to i-th type I vertex the element γi. The
element OI is defined in the same way as in the definition of dn,mK with projecting on A.
We set OA

Γ (a1∣a2∣ . . . ∣an∣k∣b1∣ . . . ∣bm) = cΓ∑I OI(a1∣a2∣ . . . ∣an∣k∣b1∣ . . . ∣bm). The map UA is
defined by its Taylor components Un

A ∶ T⊗n
poly → CC●(A), where Un

A = ∑Γ∈H(n,●)O
A
Γ .

Theorem 4. The map UA ∶ Tpoly → CC●(A) is L∞ quasi-isomorphism.

Proof. Let dim U = k. One can see that A is algebra of functions O(Rk,d−k) of superman-
ifold Rk,d−k and UA is an Kontsevich formality morphism for this supermanifold. Thus
according to super version of [4, Section 6.4] UA is L∞ quasi-isomorphism.

We can repeat this procedure for graphs with vertices of type III instead II and
subspace V instead U and obtain L∞ quasi-isomorphism UB ∶ Tpoly → CC●(B).

For the definition of UK we consider graph Γ ∈ G(n,m, k) and assign to it OK
Γ ∶ T⊗n

poly →
Hom(A⊗m ⊗K ⊗ B⊗k,K) in the same way as in the definition of dm,kK with polyvector
fields assigned to type I vertex. The Taylor component Un

K = ∑maxΓ∈G(n,●,●)O
K
Γ . In particular

dm,kK is O-th Taylor component U0
K .

Theorem 5. The map U = UA+UB+UK ∶ Tpoly → CC●(Cat∞(A,B,K) is a L∞ morphism.

Proof. The proof of this statement is parallel to the one of [1, Theorem 7.2]. Recall from
[1, Theorem 7.2] (iv) types of strata codimension 1 of Q̄C(n,m, k). We discuss differences
for each type of strata, appeared cause of considering different types of graphs.

(i) We have a cluster of points of type I converged to type I point. By Kontsevich
lemma we may consider only graphs with two vertices. In our admissible graphs we
have only one graph with non-trivial contribution, consisting of two points and one edge
between them. The result will be only τJe , corresponding to the Schouten–Nijenhuis
bracket between poly-vector fields.

(ii) We have a cluster of points converged to a point of type II. This contribution for

graphs is the same as contribution of ∑I⊔I′=[n] ±U ∣I ∣
K γI ●U

∣I′∣
A γI′ for Hochschild complex.

(iii) We have a cluster of points converged to a point of type III. This contribution

for graphs is the same as contribution of ∑I⊔I′=[n] ±U ∣I ∣
K γI ●U

∣I′∣
B γI′ for Hochschild complex.

(iv) We have a cluster of points converged to a point 0. This contribution for graphs

is the same as contribution of ∑I⊔I′=[n] ±U ∣I ∣
K γI ●U

∣I′∣
K γI′ for Hochschild complex.

Therefore

∀p, q ∑
Γ∈(G(n,p,q))

∑
δiQ̄C(n,p,q)

∫
δiQ̄C(n,p,q)

ωΓ = 0⇒

∑
I⊔I′=[n]

±(U ∣I ∣
K γI ●U

∣I′∣
A γI′ +U ∣I ∣

K γI ●U
∣I′∣
B γI′ +U ∣I ∣

K γI ●U
∣I′∣
K γI′) =

=∑
k≠l

±Un−1
K (γk ● γl, γ1, . . . , γ̂i, . . . , γ̂j, . . . , γn)
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Note that the right hand side equality is the condition for U to be L∞. The left hand side
formula can be rewritten by the Stokes formula.

∑
Γ∈(G(n,p,q))

∑
δiQ̄C(n,p,q)

∫
δiQ̄C(n,p,q)

ωΓ = ∑
Γ∈(G(n,p,q))

∫
Q̄C(n,p,q)

dωΓ = 0

For the last equality one should notice that ωΓ is a product of closed forms and therefore
is closed. Therefore U satisfies condition for L∞ morphism.

Theorem 6. The map U is a L∞ quasi-isomorphism.

Proof. We have a commutative diagram of L∞ morphisms: Theorem 5 claims that UA and
UB are quasi-isomorphisms, so it is enough to prove that pA or pB is a quasi-isomorphism.

Lemma 8. The L∞ morphism pA is a quasi-isomorphism.

Proof. Theorem 3 claims that it is enough to show that the left derived action LA is a
quasi-isomorphism. The proof of this statement is identical to the one of [1, Proposition
7.5].

7.3 G∞ morphism

Recall from [7] the definition of connected stable morphism.

Definition 9. A stable formality morphism U is called connected if the numbers cΓ in
its definition vanish on externally disconnected graphs.

It is easy to see the following statement.

Proposition 24. L∞ morphism U , constructed in the previous section is connected.

Now we are ready to formulate the main result of this section.

Theorem 7. Let U be a connected L∞ stable formality morphism. Then we can choose
a homotopic stable formality morphism U ′ that can be extended to a G∞ morphism.

To prove this fact we introduce some new notations.
Recall from [7] that EGer is two-coloured operad governing two G∞ algebras and G∞

map between them.
Let EELie be the coloured operad, governing L∞ algebra X, A∞ category of special

type Cat∞(A,B,K) and L∞ morphism X → C●(Cat∞(A,B,K)).
Let EEGer be the coloured operad, obtained from EELie by interchanging L∞ algebra

and morphism to G∞.
Let us define QCGraphs as graphs with all vertices of type I. We have a commutative

diagram of operadic torsors:
Our stable formality morphism U after twisting gives a map EELie → QCGraphs.

We can choose corresponded to this formality morphism QCGraphsU . Let us call the
resulting coloured operad HugeGraphs = (Br QCGraphsU Graphs2∗).

Now we are ready for the proof of the theorem 8.

Proof. To finish the proof we should check that we can choose the homotopic one G∞

morphism U ′ such that U ′ is stable formality morphism. It is parallel to the same fact in
[7].
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Corollary 5. Constructed in the subsection 7.2 L∞ morphism U up to homotopy can be
extended to the G∞ one.

Proof. Tpoly is Gerstenhaber algebra and therefore G∞ algebra. On the Hochshild cochain
complex of A∞ category we have natural structure of Br algebra and therefore Br∞ or
equivalently G∞ algebra. Thus the statement of the corollary is correct. Proposition
23 claims that U is connected stable formality morphism. Therefore this corollary is
immediate consequence of theorem 8.

8 Algebraic model for points in n-sided polygon

Our goal in this section is to extend the algebraic model of graphs, described in section 3
to the case of configuration space of points in n-sided polygon. Proofs of all statements
are paralel to the case described above, so this section is constructed as collection of
statements and comments to them.

8.1 Configuration space of points in n-sided polygon

Definition 10. Let P be n-sided polygon with sides p1, . . . , pn. We denote by PCn(a0, a1, . . . , an)
the configuration space of a0 points in the interior of P and ai points on pi and by
PCn(a0, a1, . . . , an) its Fulton-Macpherson compactification. Points on a side pi are called
type i and points in the interior are called type 0.

Lemma 9. Boundary stratas of PCn(a0, a1, . . . , an) are in 1 − 1 correspondence with
specified class of coloured trees.

Proof. Firstly, we need to define this class of trees. As in lemma 1 we associate each
colour of edge to a type of codimension 1 strata, i.e. to a cluster of converging points.
We have 3 cases:

(i) The cluster of points of type 0 converges to a point of type 0. Corresponding tree
without internal vertices is coloured 0.

(ii) The cluster of points of types 0 and i converges to a point of type i. Corresponding
tree is coloured ai, we have n different colours.

(iii) The cluster of points of types 0, i and i + 1 converges to vertex i. Corresponding
tree is coloured bi, we have n different colours. From here we understand index n + 1 as
1 and a0 (b0) as an (bn).

It follows that an ancestor of a vertex of colour ai can be vertex of colour ai, bi, bi−1

or pre-root. An ancestor of a vertex of colour bi can be only of colour bi or pre-root. The
colouration of pre-root vertex is fixed.

Now 1 − 1 correspondence follows from arguments of lemma 1.

Corollary 6. The collection of spaces

{PCn,QC1,QC2, . . . ,QCn, SC1, SC2, . . . , SCn,C}

can be endowed with the 2n+1-coloured operadic structure, where C̄i is Fulton-Macpherson
compactification of configuration space of points in the interior, SCi - Fulton-Macpherson
compactification of configuration space of points on i-th side and in the interior of polygon
(quasi-isomorphic to Swiss-Cheese operad) and SCi is defined as in definition 2 for vertex
i and sides pi−1 and pi.
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Proof. On all components SCi we have natural (Swiss-Cheese) operadic structures in
colours ai and 0. Let all other colours act by 0. On all components QCi we have defined
by corollary 1 operadic structures in colours bi, ai, ai−1 and 0. All other colours act by 0.
On PC operadic action is defined by clusters parallel to Corollary 1. Associativity follows
from the same reason.

Corollary 7. The collection of algebras

Ω ∶= {Ω(PCn),Ω(QC1), . . . ,Ω(QCn),Ω(SC1), . . . ,Ω(SCn),Ω(C)}

is endowed with the structure of 2n + 1-coloured dg-Hopf cooperad.

Note that propositions 2-5 can be adapted for our case without any changes.

8.2 Graph model

We consider graphs with external vertices of different types:
(i) type 0 - vertices in the interior of the polygon P ;
(ii) type i - vertices on the side pi;
(iii) vertex i - on the vertex i of the polygon.
We prohibit edges between vertices on one side. Consider the vector space generated

by all graphs with a0 vertices of type 0 and ai of type i and take coinvariants as in section
3.1. We denote the resulting vector space PG(a0, a1, . . . , an).

Proposition 25. The collection of spaces

{PG,G1,G2, . . . ,Gn,Graphs1
SC ,Graphs

2
SC , . . . ,Graphs

n
SC ,Graphs2}

is endowed with the structure of 2n + 1-coloured cooperad.

Proof. The cooperadic structure on GraphsiSC and Graphs2 is the same as in Swiss-
Cheese operad. All other colours we assume acting by 0. The cooperadic structure on Gi

is defined in proposition 6. So we need to define a operadic composition on PG.
(i) For the action of the colour 0 (i.e. PG → PG ⊗Graphs2) we have the same map

as in (i) in proposition 6;
(ii) For the action of a colour ai (i.e. PG → PG⊗GraphsiSC) we have the same map

as in (ii) in proposition 6;
(iii) For the action of a colour bi (i.e. PG → PG ⊗Gi) we have the same map as in

(iii) in proposition 6;

We consider augmented twisted version of this cooperad. Identically to proposition 7
we have the structure of commutative algebra on each component. Our next goal is to
define differential forms on the configuration space of points in the polygon. We have

Proposition 26. There exists a map f ∶ H → P called Schwarz–Christoffel mapping,
such that f is conformal equivalence on the interior of P . If we extend to H ∪ R, the
image is P .
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Let a, b ∈H and φ(a, b) = a−b
ā−b be the function measuring hyperbolic angle between two

points in H. We have natural 1-form on configuration space of two points a and b in P .
(Of course we should consider all cases o types of a and b, but the method is unique for
all cases.) We can fix a by translation. ωP (a, b) ∶= d(φ(f−1(a), f−1(b)).

Now for an edge e with endpoints s and t in a graph Γ ∈ PG(a0, a1, . . . , an) we
have 1-form ωe ∶= π ∗ ωP (s, f), where π is projection of PC(a0, a1, . . . , an) to appro-
priate configuration space with respect to types of s and f . Let ωΓ = ∏e∈E(Γ) ωe and
cΓ = ∫PC(a0,a1,...,an)

ωΓ.
Let us define differential on TwPG as in proposition 7. P is the vector space of

contractible graphs, c ∶ P → R, c(Γ) = cΓ gives R a structure of P -module.

d ∶= TwPG ○Ð→ TwPG⊗ TwPG ⊗PRÐ→ TwPG⊗ TwPG⊗P R e⊗PRÐ→ TwPG⊗ P ⊗PRÐ→ TwPG.

It can be described explicitly as in proposition 7. It has three types of components:
(i) A contraction of an edge between two vertices of type 0;
(ii) A contraction of subgraph consisting only of types 0 and i vertices to vertex of

type i;
(iii) A contraction of subgraph consisting only of types 0, i−1 and i vertices and vertex

i to vertex i.
Combining all in this section we have

Proposition 27. The collection of spaces

{TwPG,TwG1, TwG2, . . . , TwGn, TwGraphs1
SC , . . . , TwGraphs

n
SC , TwGraphs2}

is endowed with the structure of 2n + 1-coloured dg-Hopf cooperad.

We can define the space of externally disconnected graphs NP as in definition 3 by
assuming vertices on all sides to be free. One can check that propositions 9,10 and 11 are
adapted for this case without any changes.

Corollary 8. The collection of vector spaces

PA ∶= {TwPG/NP
,A1

QC ,A
1
QC , . . . ,A

n
QC ,A

1
SC ,A

2
SC , . . . ,A

n
SC ,A2}

is well-defined and has induced structure of 2n + 1-coloured dg-Hopf cooperad.

Theorem 8. The Kontsevich space integral I ∶ PA→ Ω
(i) is correctly defined, i.e. vanishing on externally disconnected graphs;
(ii) commutes with the structures of coloured dg-Hopf cooperad;
(iii) is chain map;
(iv) is quasi-isomorphism.

Proof. The proof of each part this statement is identical to the one for configuration space
of points in the first quarter. So we refer to theorems 1 and 2 and propositions 12,13 and
14.
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