Unipotent representations from a geometric point of view (joint with Ivan Losev and Lucas Mason-Brown)

Dmytro Matvieievskyi

November 9, 2020

Plan of the talk

(1) Unipotent representations

- Unipotent representations
- Special unipotent representations
- Vogan's desiderata for unipotent representations
(2) Quantizations
- Definition of a quantization
- Canonical quantizations
(3) Unipotent Harish-Chandra bimodules

4) Structure of unipotent Harish-Chandra bimodules

- Generalized BVLS duality
- Description of the unipotent ideals

Unitary representations

G is a simple complex group.
Unitary representation is a pair (\mathcal{H}, ρ), where \mathcal{H} - Hilbert space,
$\rho: G \rightarrow U(\mathcal{H})$ - continuous group homomorphism.

Question: [Gelfand, 1930-s]

Describe the set \widehat{G} of irreducible unitary representations of G.
Solved for $G L_{n}$ by Vogan in 1986, and for all other complex classical groups by Barbasch in 1989.

Orbit method

Let \mathfrak{g} be the Lie algebra of G. Idea (Kirillov, Kostant):

Expectation (orbit method):
There is a connection between the set of coadjoint orbits in \mathfrak{g}^{*} and \widehat{G}.
On the left hand side of correspondence we have symplectic manifolds. On the right hand side we have Hilbert spaces.

Hope:

The conjectured correspondence of the orbit method is given by "quantizing" the orbit.

The process of a "geometric quantization" producing a unitary representation out of a symplectic variety with symmetry is rather complicated. However, we can use a simpler notion of an algebraic quantization that will be defined later.

Unipotent representations

Let $\mathcal{O} \subset \mathfrak{g}^{*}$ be a nilpotent coadjoint orbit.
Note that the Killing form gives an identification $\mathfrak{g} \simeq \mathfrak{g}^{*}$, and in classical types for $G \subset G L_{n}$ nilpotent elements correspond to nilpotent matrices in $\mathfrak{g} \subset \mathfrak{g l} l_{n}$

Hope/Expectation:
There is a finite set $\operatorname{Unip}(\mathcal{O}) \subset \hat{G}$ of irreducible unitary representation known as unipotent representations, associated with \mathcal{O}, satisfying certain good properties (to be discussed below).

Harish-Chandra bimodules

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}.

Definition:

A Harish-Chandra bimodule X is a $U(\mathfrak{g})$-bimodule, such that the adjoint action of \mathfrak{g} integrates to the action of group G. We write $\mathrm{HC}(G)$ for the category of Harish-Chandra bimodules.

A Harish-Chandra bimodule is the same that a Harish-Chandra $(\mathfrak{g} \times \mathfrak{g}, G)$ Harish-Chandra module.
We want to have a notion of unitarizable Harish-Chandra bimodule V. Recall that the real form produces an anti-holomorphic involution σ on $G \times G$, such that the diagonal copy $G \subset G$ is identified with $(G \times G)^{\sigma}$. We abuse the notation to denote the corresponding involution of $\mathfrak{g} \times \mathfrak{g}$ by σ.

Unitarizable Harish-Chandra bimodules

A Hermitian form on V is a sesquilinear pairing $\langle\bullet, \bullet\rangle: V \otimes V \rightarrow \mathbb{C}$, such that $\langle v, w\rangle=\overline{\langle w, v\rangle}$.
We say that a Hermitian form is σ-invariant if $\langle X v Y, w\rangle=\langle x,-\sigma(Y) w \sigma(X)\rangle$ for any $X, Y \in \mathfrak{g}$.

Definition:

A HC-bimodule $V \in \mathrm{HC}(G)$ is unitarizable if V can be endowed with a non-degenerate σ-invariant Hermitian form $\langle\bullet, \bullet\rangle$ such that $\langle v, v\rangle>0$ for any non-zero $v \in V$.

Deep result (Harish-Chandra):
The categories of unitary representations of G and of unitarizable HC-bimodules over G are equivalent.

Support of a Harish-Chandra bimodule

Consider $X \in \mathrm{HC}(G)$;
Set $J=\operatorname{Ann}(X) \subset U(\mathfrak{g})$ to be the annihilator of X;
$U(\mathfrak{g})$ has a PBW filtration, $F_{i} U(\mathfrak{g})$ is spanned by monomials of degree $\leqslant i$; $\operatorname{gr} J \subset S(\mathfrak{g})=\mathbb{C}\left[\mathfrak{g}^{*}\right]$;
For any ideal $I \subset \mathbb{C}\left[\mathfrak{g}^{*}\right]$ we can consider the associated variety $V(I) \subset \mathfrak{g}^{*}$ of points x, such that $f(x)=0$ for any $f \in I$.

Fact: (Joseph)
$V(\mathrm{gr} J)=\overline{\mathcal{O}}$, where $\mathcal{O} \subset \mathfrak{g}^{*}$ is a nilpotent orbit.

Barbasch-Vogan-Luzstig-Spaltenstein duality

In 1985 Barbasch and Vogan constructed some interesting unipotent HC-bimodules. To define them we need a
Barbasch-Vogan-Luzstig-Spaltenstein duality.
G - a simple complex Lie group;
\mathfrak{g} - the Lie algebra of G;
$G^{\vee}, \mathfrak{g}^{\vee}$ - Langlands dual Lie group and Lie algebra.
$\mathcal{N} \subset \mathfrak{g}, \mathcal{N}^{\vee} \subset \mathfrak{g}^{\vee}$ - corresponding nilpotent cones.

BVLS duality:

There is an order reversing map $d: \mathcal{N}^{\vee} / G^{\vee} \rightarrow \mathcal{N} / G$ on the sets of nilpotent orbits.
Orbits in the image of d are called special orbits, and d gives a bijection between the sets of special orbits.

BVLS duality

The description of BVLS duality is known for all simple Lie algebras \mathfrak{g}. Moreover, in classical types we have a combinatorial description using the parametrization of orbits by partitions.

Set $\mathfrak{g}=\mathfrak{s l}_{n}$. Nilpotent orbits in $\mathfrak{s l}_{n}$ are parametrized by partitions of n using the Jordan normal form. The BVLS duality corresponds to taking the transpose of a partition.

$$
d(\alpha)=\alpha^{T}
$$

All nilpotent orbits in $\mathfrak{s l}_{n}$ are special. That is not true for other types. For example, the minimal orbit in \mathfrak{g} is always not special if \mathfrak{g} is not of type A.

Special unipotent representations

$\mathcal{O} \subset \mathfrak{g}$ - a special orbit;
$\mathcal{O}^{\vee} \subset \mathfrak{g}^{\vee}$ is an orbit, such that $d\left(\mathcal{O}^{\vee}\right)=\mathcal{O}$;
$e^{\vee}, f^{\vee}, h^{\vee}-\mathfrak{s l}_{2}$-triple for $\mathcal{O}^{\vee}, h^{\vee} \subset \mathfrak{h}^{\vee}$ is dominant.
$Z(U(\mathfrak{g})) \simeq S(\mathfrak{h})^{W} \simeq \mathbb{C}\left[\mathfrak{h}^{*} / W\right] ;$
Recall that the maximal ideals in $U(\mathfrak{g})$ are parametrized by central characters, i.e. points in \mathfrak{h}^{*} / W;
Set $I\left(\mathcal{O}^{\vee}\right)=I\left(\frac{1}{2} h^{\vee}\right) \subset U(\mathfrak{g})$ to be the maximal ideal with central character $\frac{1}{2} h^{\vee}$.

Definition (Arthur, Barbasch-Vogan)
$\operatorname{Unip}^{s}(\mathcal{O})=\left\{X\right.$ irred., $\left.\operatorname{LAnn}(X)=\operatorname{RAnn}(X)=I\left(\mathcal{O}^{\vee}\right), d\left(\mathcal{O}^{\vee}\right)=\mathcal{O}\right\}$.

Limitations of the definition

1) If \mathcal{O} is not special, then $\operatorname{Unip}^{s}(\mathcal{O})=0$.
2) Set $\mathfrak{g}=\mathfrak{s l}_{2}$, and \mathcal{O} to be the regular orbit in $\mathfrak{s l}_{2}$. We have $\frac{1}{2} h^{\vee}=0$. The unique special unipotent representation is $\operatorname{Ind} \frac{G}{T} \mathbb{C}$. However, we have two unitary representations of $S L_{2}$ with the central character $\frac{1}{2}$. Namely, set $V^{\text {even }}, V^{\text {odd }} \subset D\left(\mathbb{A}^{1}\right)$ to be the subspaces generated by monomials of even and odd degree respectively. Define the left and right actions of $\mathfrak{s l}_{2}$ on $D\left(\mathbb{A}^{1}\right)$ by:

$$
E=\frac{i}{2} x^{2} \quad H=x \frac{d}{d x}+\frac{1}{2} \quad F=\frac{i}{2} \frac{d^{2}}{d x^{2}} .
$$

Note that $V^{\text {even }}$ and $V^{\text {odd }}$ are irreducible $\mathfrak{s l}_{2}$-bimodules under these actions. The adjoint action can be lifted to an action of the group $S L_{2}$, and both $V^{\text {even }}$ and $V^{\text {odd }}$ are unitary.
3) The example of 2) can be generalized to a unitary metaplectic representation of $S_{p_{2 n}}$, associated with the minimal orbit in $\mathfrak{s p}_{2 n}$. Such orbit is not special.

Vogan's desiderata

In 1987 Vogan proposed a list of desired properties of unipotent representations.

1) Each unipotent representation is a unitary representation associated to a nilpotent orbit \mathcal{O}.
2) For any unipotent representation $X, \operatorname{LAnn}_{U(\mathfrak{g})}(X)=\operatorname{RAnn}_{U(\mathfrak{g})}(X)$ is a maximal ideal.
3) All special unipotent representations are unipotent.
4) Unipotent representations satisfy Vogan's conjecture to be stated in the next slide.

Vogan's conjecture

Consider $X \in \operatorname{Unip}(\mathcal{O})$; For a good filtration on X the associated graded $\operatorname{gr} X$ is a finitely generated $S(\mathfrak{g})$-module;
Supp $(\operatorname{gr} X)=\overline{\mathcal{O}}$.
Vogan's conjecture/theorem:
There is a good filtration on X and a homogeneous vector bundle M on \mathcal{O}, such that $\operatorname{gr} X \simeq \Gamma(\mathcal{O}, M)$ as representations of G.

The homogeneous vector bundle M can be roughly understood as the restriction of a $\mathbb{C}\left[\mathfrak{g}^{*}\right]$-module $\operatorname{gr} X$ to \mathcal{O}.

Quantizations of conical Poisson algebras

A - finitely generated Poisson algebra, i.e. commutative algebra with a Lie bracket satisfying Leibniz identity.
A admits an algebra grading $A=\oplus_{i=0}^{\infty} A_{i}, A_{0}=\mathbb{C}$.
$\left\{A_{i}, A_{j}\right\} \subset A_{i+j-d}$ for a fixed integer $d>0$.

Definition:

(Filtered) quantization of an algebra A is a pair (\mathcal{A}, θ), where
$\mathcal{A}=\bigcup_{i} F_{i} \mathcal{A}$ is a filtered algebra;
$\left[F_{i} \mathcal{A}, F_{j} \mathcal{A}\right] \subset F_{i+j-d} \mathcal{A}$;
$\theta: \operatorname{gr} \mathcal{A} \rightarrow A-$ an isomorphism of graded Poisson brackets, where

$$
\left\{a+F_{i-1} \mathcal{A}, b+F_{j-1} \mathcal{A}\right\}=[a, b]+F_{i+j-d-1} \mathcal{A}
$$

Examples

1) $A=\mathbb{C}[x, y], \mathcal{A}=T(x, y) /(x y-y x-1)=\mathcal{D}\left(\mathbb{A}^{1}\right)$.
2) $A=S(\mathfrak{g}), \mathcal{A}=U(\mathfrak{g})$.

Quantizations of $\mathbb{C}[\mathcal{N}]$

$\mathcal{N} \subset \mathfrak{g}^{*}$ - the nilpotent cone.
Theorem (Losev):
Quantizations of $\mathbb{C}[\mathcal{N}]$ are in bijection with \mathfrak{h}^{*} / W.
$\chi \in \mathfrak{h}^{*} / W \mapsto \mathfrak{m}_{\chi} \subset \mathbb{C}\left[\mathfrak{h}^{*}\right]^{W} \simeq Z(U(\mathfrak{g}))$.
$I_{\chi}=\left(m_{\chi}\right) \subset U(\mathfrak{g})$.
$\mathcal{A}_{\chi}=U(\mathfrak{g}) / I_{\chi}$.
Examples show that some interesting unitary representations of G are associated with G-equivariant covers of nilpotent orbits rather than orbits themselves. Thus, we want to have a description of the set of quantizations of $\mathbb{C}[\widehat{\mathcal{O}}]$ for any orbit $\mathcal{O} \subset \mathcal{N}$, and any G-equivariant covering $\widehat{\mathcal{O}}$ of the orbit \mathcal{O}.

Affine conical symplectic singularities

Let X be a normal Poisson variety, and assume that the regular locus $X^{\text {reg }}$ admits a symplectic form $\omega^{\text {reg }}$. Following Beauville, we say that X has symplectic singularities if X admits a projective resolution of singularities $\rho: \widetilde{X} \rightarrow X$, such that $\rho^{*}\left(\omega^{\text {reg }}\right)$ extends to a regular (not necessarily symplectic) form on \widetilde{X}.
We say that an affine symplectic singularity X is conical if $\mathbb{C}[X]$ is a conical Poisson algebra.

Examples of affine symplectic singularities:

1) Kleinian singularity \mathbb{C}^{2} / Γ, where $\Gamma \in S p_{2}$ is a finite subgroup;
2) $\operatorname{Spec}(\mathbb{C}[\mathcal{O}])$ for any nilpotent orbit $\mathcal{O} \subset \mathcal{N}$;
3) $\operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}])$ for any G-equivariant cover $\widehat{\mathcal{O}}$ of \mathcal{O}.

Quantizations of affine conical symplectic singularities

Let X be an affine conical symplectic singularity.
Theorem: (Losev)
Quantizations of X are in bijection with \mathfrak{P} / W, where \mathfrak{P} is an affine space, and W is a finite group acting on \mathfrak{P} by reflections.

Examples:

1) For $X=\mathcal{N}$ we have $\mathfrak{P}=\mathfrak{h}^{*}$ and W is the Weyl group of \mathfrak{g};
2) We can obtain a similar representation-theoretic description of \mathfrak{P} and W for any $X=\operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}])$. Namely, there is a Levi subalgebra $\mathfrak{l} \subset \mathfrak{g}$, such that $\mathfrak{P} \simeq(\mathfrak{l} /[\mathfrak{l}, \mathfrak{l}])^{*}$. The description of W is more subtle.

Canonical quantizations

Let X be an affine conical symplectic singularity, and set $A=\mathbb{C}[X]$.
There is a distinguished quantization \mathcal{A} of A called the canonical quantization, satisfying the following properties.
\mathcal{A} is an even quantization, i.e. it admits a filtered anti-involution $\sigma: \mathcal{A} \rightarrow \mathcal{A}$, such that $\operatorname{gr} \sigma: A \rightarrow A$ sends $a \in A_{i}$ to $\zeta^{i} a$, where ζ is a primitive $2 d$-th root of unity;
The action of the group of Poisson automorphisms of X on A lifts to an action on \mathcal{A}.
For $X=\operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}])$ we have an additional properties of \mathcal{A}.
G acts on \mathcal{A}, and the action admits a unique quantum comoment map $\Phi: U(\mathfrak{g}) \rightarrow \mathcal{A}$.
\mathcal{A} has a structure of a Harish-Chandra bimodule over G.
We define the ideal $I(\widehat{\mathcal{O}}) \subset U(\mathfrak{g})$ to be the kernel of Φ.

Unipotent Harish-Chandra bimodules

Set \mathcal{A} to be the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}]$, and let Π be the Galois group of the covering $\widehat{\mathcal{O}} \rightarrow \mathcal{O}$. The action of Π on $\mathbb{C}[\widehat{\mathcal{O}}]$ lifts to the action on \mathcal{A}.
For any irreducible representation V of Π set $X_{V}=\left(\mathcal{A}_{0}(\widehat{\mathcal{O}}) \otimes V\right)^{\Pi}$.
Definition: (Losev, Mason-Brown, M.)
We define the set Unip $\hat{\mathcal{O}}_{(\mathcal{O}}(\mathcal{O}$ of unipotent Harish-Chandra bimodules associated with $\hat{\mathcal{O}}$ to be the set $\left\{X_{V}\right\}$ for all irreducible representations V of Π.
We set $\operatorname{Unip}(\mathcal{O})=\bigcup_{\widehat{\mathcal{O}}} \operatorname{Unip}_{\hat{\mathcal{O}}}(\mathcal{O})$ to be the set of unipotent Harish-Chandra bimodules corresponding to the orbit \mathcal{O}.

Unipotent Harish-Chandra bimodules

We have the following properties of unipotent Harish-Chandra bimodules.

1) X_{V} is irreducible Harish-Chandra bimodule for any irreducible representation V of Π.
2) $\operatorname{LAnn}\left(X_{V}\right)=\operatorname{RAnn}\left(X_{V}\right)=I(\widehat{\mathcal{O}})$.

Proposition: (Losev, Mason-Brown, M.)
Suppose G is a classical linear group. Let \mathcal{A} be the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}]$. The ideal $I(\widehat{\mathcal{O}}) \subset U(\mathfrak{g})$ is maximal.

Proof is based on combinatorial computations, and we expect the proposition to hold for all simple G.

Example of $S L_{2}$

Set $G=S L_{2}$, and \mathcal{O} to be the regular nilpotent orbit in $\mathfrak{s l}_{2}$.
For a trivial cover \mathcal{O} we have the unique unipotent Harish-Chandra bimodule in $\operatorname{Unip}_{\mathcal{O}}(\mathcal{O})$ that is the canonical quantization of $\mathbb{C}[\mathcal{O}]=\mathbb{C}[\mathcal{N}]$. In fact, this quantization is $\operatorname{Ind} \frac{G}{T} \mathbb{C}$ and coincides with the special unipotent Harish-Chandra bimodule for \mathcal{O}.
Consider the universal 2-fold cover $\widehat{\mathcal{O}}=\mathbb{C}^{2} \backslash\{0\}$. We have $\mathbb{C}[\widehat{\mathcal{O}}]=\mathbb{C}[x, y]$, and the canonical quantization is $\mathcal{A}=\mathcal{D}\left(\mathbb{A}^{1}\right)=\mathbb{C}\left[x, \frac{d}{d x}\right] /\left(\frac{d}{d x} x-x \frac{d}{d x}-1\right)$. The group $\Pi=\mathbb{Z}_{2}$ acts on \mathcal{A} by sending x to $-x$ and $\frac{d}{d x}$ to $-\frac{d}{d x}$. We have two unipotent Harish-Chandra bimodules:

$$
\begin{aligned}
V^{\text {even }} & =\mathcal{A}^{\mathbb{Z}_{2}} \\
V^{\text {odd }} & =(\mathcal{A} \otimes \operatorname{sign})^{\mathbb{Z}_{2}} .
\end{aligned}
$$

Vogan's desiderata

1) Vogan's conjecture.

Follows directly from the definition of a unipotent Harish-Chandra bimodule. Indeed, consider $X_{V} \in \operatorname{Unip}_{\hat{\mathcal{O}}}(\mathcal{O})$ for some representation V of Π. Set $p: \widehat{\mathcal{O}} \rightarrow \mathcal{O}$ be the covering map, and $M=p_{*}\left(\mathcal{S}_{\widehat{\mathcal{O}}} \otimes V\right)^{\Pi}$. Such M satisfies the condition of Vogan's conjecture.
2) For any $X \in U n i p(G), \operatorname{LAnn}_{U(\mathfrak{g})}(X)=\operatorname{RAnn}_{U(\mathfrak{g})}(X)$ is a maximal ideal
Proved for classical linear group G, expected to be true for all G.
3) $\operatorname{Unip}(\mathfrak{g}) \subset \widehat{G}$

Proved for classical linear group G, expected to be true for all G.
4) $\operatorname{Unip}(\mathcal{O}) \supset \operatorname{Unip}^{s}(\mathcal{O})$

Proved for classical linear group G, expected to be true for all G.

Questions to be answered:

1) Why do we have $\operatorname{Unip}(\mathcal{O}) \supset \operatorname{Unip}^{s}(\mathcal{O})$?
2) How many irreducible representations are annihilated by the ideal $I(\widehat{\mathcal{O}})$?
3) Why are unipotent representations unitary?

Generalized duality

Assume G is a classical linear group. Let $\operatorname{SpCov}(\mathfrak{g})$ be the set of G-equivariant covers of special orbits in \mathfrak{g}.

Theorem: (Losev, Mason-Brown, M.)
There is an injective map $\tilde{d}: \mathcal{N}^{\vee} / G^{\vee} \rightarrow \operatorname{SpCov}(\mathfrak{g})$, such that $\tilde{d}\left(\mathcal{O}^{\vee}\right)$ is a G-equivariant cover of $d\left(\mathcal{O}^{\vee}\right)$; $I\left(\tilde{d}\left(\mathcal{O}^{\vee}\right)\right)=I\left(\frac{1}{2} h^{\vee}\right)$.

Corollary:
$\operatorname{Unip}(\mathcal{O}) \supset \operatorname{Unip}^{s}(\mathcal{O})$.

Almost etale covers

For a G-equivariant cover $\hat{\mathcal{O}}$ consider the ideal $I(\hat{\mathcal{O}})$.

Proposition:

There is a unique maximal G-equivariant cover $\widetilde{\mathcal{O}}$ of $\widehat{\mathcal{O}}$ with the Galois group Π of the covering $\widetilde{\mathcal{O}} \rightarrow \mathcal{O}$, satisfying the following properties.
$I(\widehat{\mathcal{O}})=I(\widetilde{\mathcal{O}})$, and therefore $\operatorname{Unip}_{\widehat{\mathcal{O}}}(\mathcal{O})=\operatorname{Unip}_{\widetilde{\mathcal{O}}}(\mathcal{O})$;
X_{V} is not isomorphic to X_{W} for two non-isomorphic irreducible representations V and W of Π;
Any irreducible Harish-Chandra bimodule X with $\operatorname{LAnn}(X)=\operatorname{RAnn}(X)=I(\widetilde{\mathcal{O}})$ is isomorphic to X_{V} for some irreducible representation V of Π.

Lusztig-Spaltenstein induction

Δ - the set of simple roots of \mathfrak{g}
$\Delta=\left(e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{n-1}-e_{n}\right)$
Φ - the root system of $\mathfrak{g} \quad \Phi=\left(\left\{e_{i}-e_{j}\right\}\right)$
$I \subset \Delta \quad I=\Delta /\left\{e_{k-1}-e_{k}\right\}$
$\Phi_{I} \subset \Phi$
$\Phi_{I}=\left(\left\{e_{i}-e_{j} \mid i, j \leqslant k\right.\right.$ or $\left.\left.i, j>k\right\}\right)$
$\mathfrak{l}_{I}=\mathfrak{h} \oplus \sum_{\alpha \in \Phi_{l}} \mathfrak{g}_{\alpha}$ - Levi subalgebra of \mathfrak{g}

$$
\mathfrak{l}_{I}=\mathfrak{s}\left(\mathfrak{g l}_{k} \times \mathfrak{g l}_{n-k}\right) ;
$$

$\mathfrak{p}_{I}=\mathfrak{l}_{I} \oplus \mathfrak{n}_{I}$ - a parabolic subalgebra
$P \subset G, L \subset G-$ corresponding subgroups.
$\mathcal{O}_{L} \subset \mathfrak{l}$ - a nilpotent L-orbit.
Lusztig-Spaltenstein induction.
The image of the map $\rho: G \times^{P}\left(\overline{\mathcal{O}}_{L} \times \mathfrak{n}\right) \rightarrow \mathfrak{g}$ contains the unique open dense orbit \mathcal{O}.
Such orbit \mathcal{O} is called induced from $\left(\mathcal{O}_{L}, \mathfrak{l}\right)$. If orbit \mathcal{O} cannot be induced from any proper Levi subalgebra \mathfrak{l}, we say that \mathcal{O} is a rigid orbit.

Birational Lusztig-Spaltenstein induction

Let \mathcal{O} be induced from $\mathcal{O}_{L} \subset \mathfrak{l}$.
Let $\hat{\mathcal{O}}_{L}$ be an L-equivariant covering of \mathcal{O}_{L}.
$\rho: G \times^{P}\left(\operatorname{Spec}\left(\mathbb{C}\left[\widehat{\mathcal{O}}_{0}\right]\right) \times \mathfrak{n}\right) \rightarrow \mathfrak{g}$.
$\widehat{\mathcal{O}}=\rho^{-1}(\mathcal{O})$.
$\hat{\mathcal{O}}$ is a G-equivariant covering of \mathcal{O}. We say that $\hat{\mathcal{O}}$ is birationally induced from ($\widehat{\mathcal{O}}_{L}, \mathfrak{l}$). If $\widehat{\mathcal{O}}$ cannot be birationally induced from any proper Levi subalgebra \mathfrak{l}, we say that $\widehat{\mathcal{O}}$ is a birationally rigid cover.

For any covering $\widehat{\mathcal{O}}$ there is a unique pair $\left(\widehat{\mathcal{O}}_{L}, \mathfrak{l}\right)$, such that
$\widehat{\mathcal{O}}$ is birationally induced from $\widehat{\mathcal{O}}_{L}$;
$\widehat{\mathcal{O}}_{L}$ is a birationally rigid cover.

Quantum Hamiltonian reduction

Note that $G \times^{P}\left(\operatorname{Spec}\left(\mathbb{C}\left[\widehat{\mathcal{O}}_{0}\right]\right) \times \mathfrak{n}\right)=\left(T^{*} G \times \operatorname{Spec}\left(\mathbb{C}\left[\widehat{\mathcal{O}}_{0}\right]\right)\right) / / / P$ is obtained by Hamiltonian reduction.
We can use quantum Hamiltonian reduction to define parabolic induction of quantizations.

Proposition:

Suppose that $\widehat{\mathcal{O}}$ is birationally induced from $\left(\mathfrak{l}, \widehat{\mathcal{O}}_{\mathrm{L}}\right)$. Then the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}]$ is parabolically induced from the canonical quantization of $\mathbb{C}\left[\hat{\mathcal{O}}_{L}\right]$.

Proposition:

Assume that \mathcal{O} is not birationally rigid orbit, and let $\mathcal{O}_{L} \subset \mathfrak{L}^{*}$ be the birationally rigid orbit, such that \mathcal{O} is birationally induced from ($\mathfrak{l}, \mathcal{O}_{L}$). Then all $X \in \operatorname{Unip}(\mathcal{O})$ are obtained from $\operatorname{Unip}\left(\mathcal{O}_{L}\right)$ by taking (possibly twisted) parabolic induction and taking isotypic components with respect to the finite group actions.

Unitarity of unipotent representations

Proposition (Barbasch):
If \mathcal{O} is a rigid orbit, then any $X \in \operatorname{Unip}(\mathcal{O})$ is unitarizable.
It is easy to imply the analogous statement for a birationally rigid \mathcal{O}. For G classical linear group the operations described in the previous slide send unitarizable Harish-Chandra bimodules to unitarizable Harish-Chandra bimodules. We expect it to be true for general G. That implies that $\operatorname{Unip}(G) \subset \widehat{G}$.

