Unipotent representations from a geometric point of view (joint with Ivan Losev and Lucas Mason-Brown)

Dmytro Matvieievskyi

November 9, 2020

Dmytro Matvieievskyi

Unipotent representations

November 9, 2020 1 / 31

Plan of the talk

Unipotent representations

- Unipotent representations
- Special unipotent representations
- Vogan's desiderata for unipotent representations
- 2 Quantizations
 - Definition of a quantization
 - Canonical quantizations
- ③ Unipotent Harish-Chandra bimodules
- 4 Structure of unipotent Harish-Chandra bimodules
 - Generalized BVLS duality
 - Description of the unipotent ideals

Unitary representations

G is a simple complex group. Unitary representation is a pair (\mathcal{H}, ρ) , where \mathcal{H} – Hilbert space, $\rho: G \rightarrow U(\mathcal{H})$ – continuous group homomorphism.

Question: [Gelfand, 1930-s]

Describe the set \hat{G} of irreducible unitary representations of G.

Solved for GL_n by Vogan in 1986, and for all other complex classical groups by Barbasch in 1989.

Orbit method

Let \mathfrak{g} be the Lie algebra of G. Idea (Kirillov, Kostant):

Expectation (orbit method):

There is a connection between the set of coadjoint orbits in \mathfrak{g}^* and \widehat{G} .

On the left hand side of correspondence we have symplectic manifolds. On the right hand side we have Hilbert spaces.

Hope:

The conjectured correspondence of the orbit method is given by "quantizing" the orbit.

The process of a "geometric quantization" producing a unitary representation out of a symplectic variety with symmetry is rather complicated. However, we can use a simpler notion of an algebraic quantization that will be defined later.

Dmytro Matvieievskyi

Unipotent representations

Unipotent representations

Let $\mathcal{O} \subset \mathfrak{g}^*$ be a nilpotent coadjoint orbit. Note that the Killing form gives an identification $\mathfrak{g} \simeq \mathfrak{g}^*$, and in classical types for $G \subset GL_n$ nilpotent elements correspond to nilpotent matrices in $\mathfrak{g} \subset \mathfrak{gl}_n$

Hope/Expectation:

There is a finite set $Unip(\mathcal{O}) \subset \widehat{G}$ of irreducible unitary representation known as unipotent representations, associated with \mathcal{O} , satisfying certain good properties (to be discussed below).

Harish-Chandra bimodules

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} .

Definition:

A Harish-Chandra bimodule X is a $U(\mathfrak{g})$ -bimodule, such that the adjoint action of \mathfrak{g} integrates to the action of group G. We write HC(G) for the category of Harish-Chandra bimodules.

A Harish-Chandra bimodule is the same that a Harish-Chandra $(\mathfrak{g} \times \mathfrak{g}, G)$ Harish-Chandra module.

We want to have a notion of unitarizable Harish-Chandra bimodule V. Recall that the real form produces an anti-holomorphic involution σ on $G \times G$, such that the diagonal copy $G \subset G$ is identified with $(G \times G)^{\sigma}$. We abuse the notation to denote the corresponding involution of $\mathfrak{g} \times \mathfrak{g}$ by σ .

Unitarizable Harish-Chandra bimodules

A Hermitian form on V is a sesquilinear pairing $\langle \bullet, \bullet \rangle : V \otimes V \to \mathbb{C}$, such that $\langle v, w \rangle = \overline{\langle w, v \rangle}$. We say that a Hermitian form is σ -invariant if $\langle XvY, w \rangle = \langle x, -\sigma(Y)w\sigma(X) \rangle$ for any $X, Y \in \mathfrak{g}$.

Definition:

A HC-bimodule $V \in HC(G)$ is unitarizable if V can be endowed with a non-degenerate σ -invariant Hermitian form $\langle \bullet, \bullet \rangle$ such that $\langle v, v \rangle > 0$ for any non-zero $v \in V$.

Deep result (Harish-Chandra):

The categories of unitary representations of G and of unitarizable HC-bimodules over G are equivalent.

Support of a Harish-Chandra bimodule

Consider
$$X \in HC(G)$$
;
Set $J = Ann(X) \subset U(\mathfrak{g})$ to be the annihilator of X ;
 $U(\mathfrak{g})$ has a PBW filtration, $F_iU(\mathfrak{g})$ is spanned by monomials of degree $\leq i$;
gr $J \subset S(\mathfrak{g}) = \mathbb{C}[\mathfrak{g}^*]$;
For any ideal $I \subset \mathbb{C}[\mathfrak{g}^*]$ we can consider the associated variety $V(I) \subset \mathfrak{g}^*$
of points x , such that $f(x) = 0$ for any $f \in I$.

Fact: (Joseph)

 $V(\operatorname{gr} J) = \overline{\mathcal{O}}$, where $\mathcal{O} \subset \mathfrak{g}^*$ is a nilpotent orbit.

Barbasch-Vogan-Luzstig-Spaltenstein duality

In 1985 Barbasch and Vogan constructed some interesting unipotent HC-bimodules. To define them we need a Barbasch-Vogan-Luzstig-Spaltenstein duality.

$$G - a$$
 simple complex Lie group;

 \mathfrak{g} – the Lie algebra of G;

 G^{\vee} , \mathfrak{g}^{\vee} – Langlands dual Lie group and Lie algebra.

 $\mathcal{N} \subset \mathfrak{g}, \ \mathcal{N}^{\vee} \subset \mathfrak{g}^{\vee}$ – corresponding nilpotent cones.

BVLS duality:

There is an order reversing map $d : \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$ on the sets of nilpotent orbits. Orbits in the image of d are called *special* orbits, and d gives a bijection between the sets of special orbits.

BVLS duality

The description of BVLS duality is known for all simple Lie algebras g. Moreover, in classical types we have a combinatorial description using the parametrization of orbits by partitions.

Set $\mathfrak{g} = \mathfrak{sl}_n$. Nilpotent orbits in \mathfrak{sl}_n are parametrized by partitions of n using the Jordan normal form. The BVLS duality corresponds to taking the transpose of a partition.

$$d(\alpha) = \alpha^T$$

 $\alpha = \left[\begin{array}{c} & & \\ & &$

Special unipotent representations

$$\mathcal{O} \subset \mathfrak{g}$$
 - a special orbit;
 $\mathcal{O}^{\vee} \subset \mathfrak{g}^{\vee}$ is an orbit, such that $d(\mathcal{O}^{\vee}) = \mathcal{O}$;
 $e^{\vee}, f^{\vee}, h^{\vee} - \mathfrak{sl}_2$ -triple for $\mathcal{O}^{\vee}, h^{\vee} \subset \mathfrak{h}^{\vee}$ is dominant.
 $Z(U(\mathfrak{g})) \simeq S(\mathfrak{h})^W \simeq \mathbb{C}[\mathfrak{h}^*/W]$;
Recall that the maximal ideals in $U(\mathfrak{g})$ are parametrized by central
characters, i.e. points in \mathfrak{h}^*/W ;
Set $I(\mathcal{O}^{\vee}) = I(\frac{1}{2}h^{\vee}) \subset U(\mathfrak{g})$ to be the maximal ideal with central
character $\frac{1}{2}h^{\vee}$.

Definition (Arthur, Barbasch-Vogan) $Unip^{s}(\mathcal{O}) = \{X \text{ irred., } LAnn(X) = RAnn(X) = I(\mathcal{O}^{\vee}), d(\mathcal{O}^{\vee}) = \mathcal{O}\}.$

Limitations of the definition

- 1) If \mathcal{O} is not special, then $Unip^{s}(\mathcal{O}) = 0$.
- 2) Set g = sl₂, and O to be the regular orbit in sl₂. We have ¹/₂h[∨] = 0. The unique special unipotent representation is Ind^G_T C. However, we have two unitary representations of SL₂ with the central character ¹/₂. Namely, set V^{even}, V^{odd} ⊂ D(A¹) to be the subspaces generated by monomials of even and odd degree respectively. Define the left and right actions of sl₂ on D(A¹) by:

$$E = \frac{i}{2}x^2 \qquad \qquad H = x\frac{d}{dx} + \frac{1}{2} \qquad \qquad F = \frac{i}{2}\frac{d^2}{dx^2}$$

Note that V^{even} and V^{odd} are irreducible \mathfrak{sl}_2 -bimodules under these actions. The adjoint action can be lifted to an action of the group SL_2 , and both V^{even} and V^{odd} are unitary.

3) The example of 2) can be generalized to a unitary metaplectic representation of Sp_{2n} , associated with the minimal orbit in \mathfrak{sp}_{2n} . Such orbit is not special.

Dmytro Matvieievskyi

Vogan's desiderata

In 1987 Vogan proposed a list of desired properties of unipotent representations.

- 1) Each unipotent representation is a unitary representation associated to a nilpotent orbit \mathcal{O} .
- 2) For any unipotent representation X, $LAnn_{U(g)}(X) = RAnn_{U(g)}(X)$ is a maximal ideal.
- 3) All special unipotent representations are unipotent.
- 4) Unipotent representations satisfy Vogan's conjecture to be stated in the next slide.

Vogan's conjecture

Consider $X \in Unip(\mathcal{O})$; For a good filtration on X the associated graded gr X is a finitely generated $S(\mathfrak{g})$ -module; Supp $(\operatorname{gr} X) = \overline{\mathcal{O}}$.

Vogan's conjecture/theorem:

There is a good filtration on X and a homogeneous vector bundle M on \mathcal{O} , such that gr $X \simeq \Gamma(\mathcal{O}, M)$ as representations of G.

The homogeneous vector bundle M can be roughly understood as the restriction of a $\mathbb{C}[\mathfrak{g}^*]$ -module gr X to \mathcal{O} .

Quantizations of conical Poisson algebras

A – finitely generated Poisson algebra, i.e. commutative algebra with a Lie bracket satisfying Leibniz identity.

A admits an algebra grading $A = \bigoplus_{i=0}^{\infty} A_i$, $A_0 = \mathbb{C}$.

 $\{A_i, A_j\} \subset A_{i+j-d}$ for a fixed integer d > 0.

Definition:

(Filtered) quantization of an algebra A is a pair (\mathcal{A}, θ) , where

$$\mathcal{A} = \bigcup_{i} F_{i} \mathcal{A} \text{ is a filtered algebra}; [F_{i} \mathcal{A}, F_{j} \mathcal{A}] \subset F_{i+j-d} \mathcal{A}; \theta : \text{gr } \mathcal{A} \to \mathcal{A} - \text{an isomorphism of graded Poisson brackets, where} {a + F_{i-1} \mathcal{A}, b + F_{j-1} \mathcal{A}} = [a, b] + F_{i+j-d-1} \mathcal{A}.$$

Examples

1)
$$A = \mathbb{C}[x, y], \ \mathcal{A} = T(x, y)/(xy - yx - 1) = \mathcal{D}(\mathbb{A}^1).$$

2) $A = S(\mathfrak{g}), \ \mathcal{A} = U(\mathfrak{g}).$

Quantizations of $\mathbb{C}[\mathcal{N}]$

 $\mathcal{N} \subset \mathfrak{g}^*$ – the nilpotent cone.

Theorem (Losev):

Quantizations of $\mathbb{C}[\mathcal{N}]$ are in bijection with $\mathfrak{h}^*/W.$

$$\begin{split} &\chi \in \mathfrak{h}^*/W \mapsto \mathfrak{m}_{\chi} \subset \mathbb{C}[\mathfrak{h}^*]^W \simeq Z(U(\mathfrak{g})). \\ &I_{\chi} = (m_{\chi}) \subset U(\mathfrak{g}). \\ &\mathcal{A}_{\chi} = U(\mathfrak{g})/I_{\chi}. \\ &\text{Examples show that some interesting unitary representations of G are associated with G-equivariant covers of nilpotent orbits rather than orbits themselves. Thus, we want to have a description of the set of quantizations of $\mathbb{C}[\widehat{\mathcal{O}}]$ for any orbit $\mathcal{O} \subset \mathcal{N}$, and any G-equivariant covering $\widehat{\mathcal{O}}$ of the orbit \mathcal{O} .$$

Affine conical symplectic singularities

Let X be a normal Poisson variety, and assume that the regular locus X^{reg} admits a symplectic form ω^{reg} . Following Beauville, we say that X has symplectic singularities if X admits a projective resolution of singularities $\rho: \widetilde{X} \to X$, such that $\rho^*(\omega^{reg})$ extends to a regular (not necessarily symplectic) form on \widetilde{X} .

We say that an affine symplectic singularity X is conical if $\mathbb{C}[X]$ is a conical Poisson algebra.

Examples of affine symplectic singularities:

- 1) Kleinian singularity \mathbb{C}^2/Γ , where $\Gamma \in Sp_2$ is a finite subgroup;
- 2) Spec($\mathbb{C}[\mathcal{O}]$) for any nilpotent orbit $\mathcal{O} \subset \mathcal{N}$;
- 2) Spec($\mathbb{C}[\widehat{\mathcal{O}}]$) for any *G*-equivariant cover $\widehat{\mathcal{O}}$ of \mathcal{O} .

Quantizations of affine conical symplectic singularities

Let X be an affine conical symplectic singularity.

Theorem: (Losev)

Quantizations of X are in bijection with \mathfrak{P}/W , where \mathfrak{P} is an affine space, and W is a finite group acting on \mathfrak{P} by reflections.

Examples:

- 1) For $X = \mathcal{N}$ we have $\mathfrak{P} = \mathfrak{h}^*$ and W is the Weyl group of \mathfrak{g} ;
- 2) We can obtain a similar representation-theoretic description of \mathfrak{P} and W for any $X = \operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}])$. Namely, there is a Levi subalgebra $\mathfrak{l} \subset \mathfrak{g}$, such that $\mathfrak{P} \simeq (\mathfrak{l}/[\mathfrak{l},\mathfrak{l}])^*$. The description of W is more subtle.

Canonical quantizations

Let X be an affine conical symplectic singularity, and set $A = \mathbb{C}[X]$.

There is a distinguished quantization \mathcal{A} of A called the canonical quantization, satisfying the following properties.

 \mathcal{A} is an even quantization, i.e. it admits a filtered anti-involution $\sigma : \mathcal{A} \to \mathcal{A}$, such that gr $\sigma : \mathcal{A} \to \mathcal{A}$ sends $a \in A_i$ to $\zeta^i a$, where ζ is a primitive 2*d*-th root of unity;

The action of the group of Poisson automorphisms of X on A lifts to an action on A.

For $X = \text{Spec}(\mathbb{C}[\widehat{\mathcal{O}}])$ we have an additional properties of \mathcal{A} .

G acts on \mathcal{A} , and the action admits a unique quantum comoment map $\Phi : U(\mathfrak{g}) \rightarrow \mathcal{A}$.

 \mathcal{A} has a structure of a Harish-Chandra bimodule over G.

We define the ideal $I(\widehat{\mathcal{O}}) \subset U(\mathfrak{g})$ to be the kernel of Φ .

Unipotent Harish-Chandra bimodules

Set \mathcal{A} to be the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}]$, and let Π be the Galois group of the covering $\widehat{\mathcal{O}} \to \mathcal{O}$. The action of Π on $\mathbb{C}[\widehat{\mathcal{O}}]$ lifts to the action on \mathcal{A} .

For any irreducible representation V of Π set $X_V = (\mathcal{A}_0(\widehat{\mathcal{O}}) \otimes V)^{\Pi}$.

Definition: (Losev, Mason-Brown, M.)

We define the set $Unip_{\widehat{\mathcal{O}}}(\mathcal{O})$ of unipotent Harish-Chandra bimodules associated with $\widehat{\mathcal{O}}$ to be the set $\{X_V\}$ for all irreducible representations Vof Π .

We set $Unip(\mathcal{O}) = \bigcup_{\widehat{\mathcal{O}}} Unip_{\widehat{\mathcal{O}}}(\mathcal{O})$ to be the set of unipotent Harish-Chandra bimodules corresponding to the orbit \mathcal{O} .

Unipotent Harish-Chandra bimodules

We have the following properties of unipotent Harish-Chandra bimodules.

1) X_V is irreducible Harish-Chandra bimodule for any irreducible representation V of Π .

2) LAnn
$$(X_V) = \text{RAnn}(X_V) = I(\widehat{\mathcal{O}}).$$

Proposition: (Losev, Mason-Brown, M.)

Suppose G is a classical linear group. Let \mathcal{A} be the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}]$. The ideal $I(\widehat{\mathcal{O}}) \subset U(\mathfrak{g})$ is maximal.

Proof is based on combinatorial computations, and we expect the proposition to hold for all simple G.

Example of SL_2

Set $G = SL_2$, and \mathcal{O} to be the regular nilpotent orbit in \mathfrak{sl}_2 .

For a trivial cover \mathcal{O} we have the unique unipotent Harish-Chandra bimodule in $Unip_{\mathcal{O}}(\mathcal{O})$ that is the canonical quantization of $\mathbb{C}[\mathcal{O}] = \mathbb{C}[\mathcal{N}]$. In fact, this quantization is $Ind_T^G \mathbb{C}$ and coincides with the special unipotent Harish-Chandra bimodule for \mathcal{O} .

Consider the universal 2-fold cover $\widehat{\mathcal{O}} = \mathbb{C}^2 \setminus \{0\}$. We have $\mathbb{C}[\widehat{\mathcal{O}}] = \mathbb{C}[x, y]$, and the canonical quantization is $\mathcal{A} = \mathcal{D}(\mathbb{A}^1) = \mathbb{C}[x, \frac{d}{dx}]/(\frac{d}{dx}x - x\frac{d}{dx} - 1)$. The group $\Pi = \mathbb{Z}_2$ acts on \mathcal{A} by sending x to -x and $\frac{d}{dx}$ to $-\frac{d}{dx}$. We have two unipotent Harish-Chandra bimodules:

$$V^{even} = \mathcal{A}^{\mathbb{Z}_2};$$

 $V^{odd} = (\mathcal{A} \otimes \operatorname{sign})^{\mathbb{Z}_2}$

Vogan's desiderata

1) Vogan's conjecture.

Follows directly from the definition of a unipotent Harish-Chandra bimodule. Indeed, consider $X_V \in Unip_{\widehat{\mathcal{O}}}(\mathcal{O})$ for some representation Vof Π . Set $p : \widehat{\mathcal{O}} \to \mathcal{O}$ be the covering map, and $M = p_*(S_{\widehat{\mathcal{O}}} \otimes V)^{\Pi}$. Such M satisfies the condition of Vogan's conjecture.

2) For any $X \in Unip(G)$, $LAnn_{U(\mathfrak{g})}(X) = RAnn_{U(\mathfrak{g})}(X)$ is a maximal ideal

Proved for classical linear group G, expected to be true for all G.

- 3) $Unip(\mathfrak{g}) \subset \widehat{G}$ Proved for classical linear group *G*, expected to be true for all *G*.
- 4) $Unip(\mathcal{O}) \supset Unip^{s}(\mathcal{O})$ Proved for classical linear group *G*, expected to be true for all *G*.

Questions to be answered:

- 1) Why do we have $Unip(\mathcal{O}) \supset Unip^{s}(\mathcal{O})$?
- 2) How many irreducible representations are annihilated by the ideal $I(\hat{O})$?
- 3) Why are unipotent representations unitary?

Generalized duality

Assume G is a classical linear group. Let $SpCov(\mathfrak{g})$ be the set of G-equivariant covers of special orbits in \mathfrak{g} .

Theorem: (Losev, Mason-Brown, M.)

There is an injective map $\tilde{d} : \mathcal{N}^{\vee}/G^{\vee} \to SpCov(\mathfrak{g})$, such that $\tilde{d}(\mathcal{O}^{\vee})$ is a *G*-equivariant cover of $d(\mathcal{O}^{\vee})$; $I(\tilde{d}(\mathcal{O}^{\vee})) = I(\frac{1}{2}h^{\vee}).$

Corollary: $Unip(\mathcal{O}) \supset Unip^{s}(\mathcal{O}).$

Almost etale covers

For a *G*-equivariant cover $\widehat{\mathcal{O}}$ consider the ideal $I(\widehat{\mathcal{O}})$.

Proposition:

There is a unique maximal *G*-equivariant cover $\widetilde{\mathcal{O}}$ of $\widehat{\mathcal{O}}$ with the Galois group Π of the covering $\widetilde{\mathcal{O}} \to \mathcal{O}$, satisfying the following properties. $I(\widehat{\mathcal{O}}) = I(\widetilde{\mathcal{O}})$, and therefore $Unip_{\widehat{\mathcal{O}}}(\mathcal{O}) = Unip_{\widetilde{\mathcal{O}}}(\mathcal{O})$; X_V is not isomorphic to X_W for two non-isomorphic irreducible representations V and W of Π ; Any irreducible Harish-Chandra bimodule X with $LAnn(X) = RAnn(X) = I(\widetilde{\mathcal{O}})$ is isomorphic to X_V for some irreducible representation V of Π .

Lusztig-Spaltenstein induction

$$\begin{array}{ll} \Delta - \text{ the set of simple roots of } \mathfrak{g} \\ \Delta = (e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n) \\ \Phi - \text{ the root system of } \mathfrak{g} \qquad \Phi = (\{e_i - e_j\}) \\ I \subset \Delta \qquad \qquad I = \Delta/\{e_{k-1} - e_k\} \\ \Phi_I \subset \Phi \qquad \qquad \Phi_I = (\{e_i - e_j | i, j \leq k \text{ or } i, j > k\}) \\ \mathfrak{l}_I = \mathfrak{h} \oplus \sum_{\alpha \in \Phi_I} \mathfrak{g}_{\alpha} - \text{Levi subalgebra of } \mathfrak{g} \qquad \mathfrak{l}_I = \mathfrak{s}(\mathfrak{gl}_k \times \mathfrak{gl}_{n-k}); \\ \mathfrak{p}_I = \mathfrak{l}_I \oplus \mathfrak{n}_I - \text{a parabolic subalgebra} \\ P \subset G, \ L \subset G - \text{ corresponding subgroups.} \\ \mathcal{O}_L \subset \mathfrak{l} - \text{a nilpotent } L \text{-orbit.} \end{array}$$

Lusztig-Spaltenstein induction.

The image of the map $\rho : G \times^{P} (\overline{\mathcal{O}}_{L} \times \mathfrak{n}) \to \mathfrak{g}$ contains the unique open dense orbit \mathcal{O} . Such orbit \mathcal{O} is called induced from $(\mathcal{O}_{L}, \mathfrak{l})$. If orbit \mathcal{O} cannot be induced from any proper Levi subalgebra \mathfrak{l} , we say that \mathcal{O} is a rigid orbit.

Dmytro Matvieievskyi

Unipotent representations

Birational Lusztig-Spaltenstein induction

Let
$$\mathcal{O}$$
 be induced from $\mathcal{O}_L \subset \mathfrak{l}$.
Let $\widehat{\mathcal{O}}_L$ be an *L*-equivariant covering of \mathcal{O}_L .
 $\rho : G \times^P (\operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}_0]) \times \mathfrak{n}) \to \mathfrak{g}$.
 $\widehat{\mathcal{O}} = \rho^{-1}(\mathcal{O}).$

 $\widehat{\mathcal{O}}$ is a *G*-equivariant covering of \mathcal{O} . We say that $\widehat{\mathcal{O}}$ is birationally induced from $(\widehat{\mathcal{O}}_L, \mathfrak{l})$. If $\widehat{\mathcal{O}}$ cannot be birationally induced from any proper Levi subalgebra \mathfrak{l} , we say that $\widehat{\mathcal{O}}$ is a birationally rigid cover.

For any covering $\widehat{\mathcal{O}}$ there is a unique pair $(\widehat{\mathcal{O}}_L, \mathfrak{l})$, such that $\widehat{\mathcal{O}}$ is birationally induced from $\widehat{\mathcal{O}}_L$; $\widehat{\mathcal{O}}_L$ is a birationally rigid cover.

Quantum Hamiltonian reduction

Note that $G \times^P (\operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}_0]) \times \mathfrak{n}) = (T^*G \times \operatorname{Spec}(\mathbb{C}[\widehat{\mathcal{O}}_0]))/\!\!/ P$ is obtained by Hamiltonian reduction.

We can use quantum Hamiltonian reduction to define parabolic induction of quantizations.

Proposition:

Suppose that $\widehat{\mathcal{O}}$ is birationally induced from $(\mathfrak{l}, \widehat{\mathcal{O}}_L)$. Then the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}]$ is parabolically induced from the canonical quantization of $\mathbb{C}[\widehat{\mathcal{O}}_L]$.

Proposition:

Assume that \mathcal{O} is not birationally rigid orbit, and let $\mathcal{O}_L \subset \mathfrak{l}^*$ be the birationally rigid orbit, such that \mathcal{O} is birationally induced from $(\mathfrak{l}, \mathcal{O}_L)$. Then all $X \in Unip(\mathcal{O})$ are obtained from $Unip(\mathcal{O}_L)$ by taking (possibly twisted) parabolic induction and taking isotypic components with respect to the finite group actions.

Dmytro Matvieievskyi

Unitarity of unipotent representations

Proposition (Barbasch):

If \mathcal{O} is a rigid orbit, then any $X \in Unip(\mathcal{O})$ is unitarizable.

It is easy to imply the analogous statement for a birationally rigid \mathcal{O} . For G classical linear group the operations described in the previous slide send unitarizable Harish-Chandra bimodules to unitarizable Harish-Chandra bimodules. We expect it to be true for general G. That implies that $Unip(G) \subset \hat{G}$.