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My main area of interest is the field of geometric representation theory. I am working
under the supervision of Ivan Losev (Yale University), and most of my work is centered
around the following two topics.

1) One-dimensional representations of finite W -algebras.
2) Unipotent representations of complex reductive groups.

The former set is closely connected to the set of irreducible representations of g, while
studying the latter set is a key step for understanding the structure of the set of unitary
representations of G.

To elaborate, letX be an irreducible finite-dimensional representation of a finiteW -algebra
W , and let J “ AnnWpXq ĂW be the corresponding primitive two-sided ideal. In [Los10b]
Losev constructed a map ‚: : JdfinpWq Ñ JdpUpgqq between the set of primitive ideals of
finite codimension in W and the set of primitive ideals in the universal enveloping Upgq.
Thus, to a finite-dimensional irreducible representation X of W with annihilator J ĂW one
can assign an irreducible representation of Upgq, namely Upgq{J:. It was shown in [Los11b]
that every primitive ideal with the associated variety O is of the form AnnpXq: for a finite-
dimensional representation X of W . An important first task is to understand the structure
of 1-dimensional representation X of W . That is a joint ongoing project with Ivan Losev,
see Section 1 and Section 3.1 for more details.

The set of unipotent representations is a finite set of unitary representations that are
assigned to nilpotent orbits in g (or, in general, G-equivariant covers of nilpotent orbits). It
is expected that all unitary representations can be constructed from the set of unipotent ones
through several types of induction. In [LMM21] together with Ivan Losev and Lucas Mason-
Brown we propose a new definition of unipotent representations of a complex reductive group
G, prove that it satisfies many of the desired properties, and give a classification of the set
of unipotent representations, see Section 2 for more details.

In Section 3 I describe the three projects I am currently involved in. First one is above
mentioned project with Ivan Losev towards the desciption of the structure of the set of 1-
dimensional representations of finite W-algebras. The second is a joint project with Ivan
Losev and Lucas Mason-Brown, in which we work towards the definition of a unipotent
Harish-Chandra module. The third project analyzes the connection between the extended
Barbasch-Vogan-Lusztig-Spaltenstein duality proposed in [LMM21] and the symplectic du-
ality.

1. One-dimensional representations of a finite W -algebra

Let g be a complex simple Lie algebra, O Ă g be a nilpotent orbit. To a nilpotent element
e P O one can assign a finite W -algebra W “ Upg, eq, see [Pre02]. We note that, up to
isomorphism, W depends only on the orbit O, and not the element e P O. There is a
distinguished transversal slice S to O at e, called the Slodowy slice, and W is a quantization
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of the algebra of functions CrSs. The goal of a joint project with Ivan Losev is to classify
all 1-dimensional representations of W in classical types.

Let G be the adjoint algebraic group corresponding to g, and let Q Ă G be the reductive
part of the stabilizer of the point e P g. Then there is a natural action of Q on W and
therefore on the set Rep1pWq of 1-dimensional representations of W . Moreover, the action
of Q on the latter is factored through Γ :“ Q{Q˝ “ πG1 pOq.

1.1. Γ-stable one-dimensional representations of a finite W -algebra. In [PT14],
Premet and Topley proved that for a classical simple Lie algebra g the set RepΓ

1 pWq is
an affine space. Their approach was completely algebraic in nature. In [Mat18] I provide an
alternative geometric approach to the problem and give another proof of this fact.

By the work of Losev [Los10a], the set of Γ-stable 1-dimensional representations of W is in
a bijection with the set of quantizations of the nilpotent orbit O considered as a symplectic
variety with Konstant-Kirillov symplectic form. The key result of [Mat18] is the following
one.

Theorem 1.1.1. Let g be a classical simple Lie algebra. Then every quantization of O can
be uniquely extended to a quantization of SpecpCrOsq.

The argument of the proof works for any nilpotent orbit O, such that for any codimension
2 orbit O1 Ă O the corresponding singularity is either a Kleinian singularity or a union of
Kleinian singularities transversally meeting at the singular point. By [KP82], that is always
true for classical types. In [FJLS15] it was shown that in exceptional types there are non-
normal codimension 2 singularities in O with the normalization isomorphic to C2 and C2{Z4

respectively. In this case, the statement of Theorem 1.1.1 is false.
The set of quantizations of SpecpCrOsq, or equivalently of the algebra CrOs, is known due

to the work of Losev [Los15] and is in a bijection with the set of points of an affine space,
thus deducing the analogous statements for the set RepΓ

1 pWq. Moreover, results of loc.cit.
imply that all quantizations of SpecpCrOsq are obtained by a parabolic induction, mirroring
the parabolic induction on the respective sets of 1-dimensional representations, see [Los11a]
for details.

For a Levi subgroup L Ă G choose a parabolic P Ă G containing L, and let p “ l ‘ n
be the corresponding parabolic subalgebra. Recall that the orbit O is obtained by Lusztig-
Spaltenstein induction from the pair pL,OLq consisting of an Levi subgroup L Ă G, and
a nilpotent orbit OL Ă l if O is the unique open G-orbit in the image of the generalized
Springer map ρ : GˆP pOL ˆ nq Ñ g. We say that O is birationally induced from pL,OLq if
moreover the map ρ is birational, and that O is birationally rigid if it cannot be birationally
induced from any proper Levi L. The following is the second main result of [Mat18].

Theorem 1.1.2. Let g be a classical simple Lie algebra, and O Ă g be a nilpotent orbit.
Suppose that O is birationally induced from pL,OLq, and OL is birationally rigid. Then all
Γ-stable 1-dimensional representations of W are parabolically induced from l.

1.2. Singularities of SpecpCrrOsq. Let rO be a G-equivariant cover of O. We would like to

prove a similar to Theorem 1.2.2 result for rO. In order to extend a quantization from rO to

SpecpCrrOsq, one needs first to understand the codimension 2 symplectic leaves of SpecpCrrOsq,
and the respective singularities. That is the main goal of this section, we refer to Section 3.1
for the next steps towards the generalization of Theorem 1.2.2.
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Recall first that SpecpCrOsq is the normalization of the closure O. The codimension 2
leaves in SpecpCrOsq are the codimension 2 G-orbits, and the singularities are easily deter-
mined from the corresponding singularities in O. The latter are well-known due to the work
of Kraft an Procesi [KP82].

Theorem 1.2.1. [KP82] Let O1 Ă O be a codimension 2 orbit. Then the singularity of
O1 Ă O is equivalent to one of the following.

a) Kleinian singularity of type A1;
b) Kleinian singularity of type Dk`1;
c) Kleinian singularity of type A2k´1;
d) Union of two Kleinian singularities of type A2k´1 transversally meeting at 0.

In [Mat20] I computed the corresponding singularities for SpecpCrpOsq, where pO is the
universal G-equivariant cover of O, and G is SOn or Sp2n. Namely, we have the following.

Theorem 1.2.2. Let O1 Ă O be a codimension 2 orbit. The preimage rO1 of O1 under the

map SpecpCrpOsq Ñ O is connected, and the singularity of rO1 in SpecpCrrOsq is equivalent to
one of the following.

a) Either Kleinian singularity of type A1 or rO1 Ă SpecpCrrOsqreg, depending on the
partitions corresponding to O and O1;

b) Either Kleinian singularity of type Dk`1 or a Kleinian singularity of type A2k´3 de-
pending on the partitions corresponding to O and O1;

c) Kleinian singularity of type A2k´1;
d) Kleinian singularity of type A2k´1.

The exact conditions for the partitions in cases a) and b) are given in [Mat20, Theorem 2.6].
To simplify the exposition we won’t provide them there. Note that using methods described

in the paper, one can compute the singularities of SpecpCrrOsq for any G-equivariant cover
rO of O.

2. Unipotent representations of complex reductive groups

Let G be a real reductive group. It is conjectured that all unitary representations of G
are constructed through induction from a finite set of irreducible unitary representations as-
sociated with nilpotent orbits called unipotent representations. There are several proposed
definitions of unipotent representations, most notably the set of special unipotent represen-
tations, see [Art83] and [BV85]. However, it is clear that there are many interesting repre-
sentations that should be considered unipotent but are not special unipotent, such as, e.g.
the oscillator representations of Mpp2n,Rq. We also note that the set of special unipotent
representations is too small to generate all unitary representations via induction. There were
several attempts to give a more general definition of the set of unipotent representations, see
[Vog84], [Bar89], [McG94] and [Bry03]. Some of these approaches are case-dependent, and
based on ad hoc definitions. Moreover, they either include non-unitary representations or
miss some of the interesting representations we would like to include. In a joint monograph
[LMM21] with Ivan Losev and Lucas Mason-Brown we propose a new definition of unipotent
representations for complex reductive groups and show that it satisfies many of the expected
properties.
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2.1. Definitions and properties of unipotent ideals. Let G be a complex reductive
group, g be the Lie algebra of G, and O Ă g be a nilpotent orbit. Consider a G-equivariant

cover rO of O. The set of quantizations of CrrOs is in a bijection with the set of points of
an affine space zplq{W for some Levi subalgebra l Ă g, and some finite group W . There

is a distinguished W -stable point 0 P zplq, and let A0p
rOq be the quantization of CrrOs

corresponding to the parameter 0 P zplq{W . We call A0p
rOq the canonical quantization of

CrrOs. The action of G on CrrOs lifts to an action on A0p
rOq, and it admits a quantum

comoment map Φ : Upgq Ñ A0p
rOq. We set I0p

rOq to be the kernel of Φ, and say that I0p
rOq is

the unipotent ideal corresponding to the cover rO. The following theorem is proved for linear
classical groups in [LMM21] and extended to all reductive groups in a joint paper [MM21]
with Mason-Brown.

Theorem 2.1.1. Let rO be a G-equivariant cover of a nilpotent orbit. The associated unipo-

tent ideal I0p
rOq is maximal.

For a classical simple group G, the infinitesimal characters of the unipotent ideals are
computed in [LMM21]. For Spin and exceptional groups the computations are carried in
[MM21]. Many of these ideals were not studied before. It is important to note that the
set of unipotent ideals includes the set of special unipotent ideals. We follow Barbasch and
Vogan [BV85] to define the latter set below.

Let g_ be the Langlands dual Lie algebra, and O_ Ă g_ be a nilpotent orbit. Fix Cartan
subalgebras h Ă g and h_ Ă g_ respectively. Pick an sl2-triple pe_, f_, h_q with e_ P O_,
such that h_ P h_, and set γO_ “

1
2
h_ P h_ » h˚. The unique maximal ideal IpγO_q

with the central character γO_ is called the special unipotent ideal corresponding to the
orbit O_. It is well-known that the associated variety of IpγO_q is the closure of a special
nilpotent orbit O “ DpO_q, where D : tnilpotent orbits in pg_qu Ñ tnilpotent orbits in gu is
the Barbash-Vogan-Lusztig-Spaltenstein duality. We proved the following:

Theorem 2.1.2. There is an injective map

rD : tnilpotent orbits in pg_qu ãÑ tcovers of nilpotent orbits in gu

that we call extended Barbasch-Vogan-Lusztig-Spaltenstein duality satisfying the following
properties:

‚ For every nilpotent orbit O_ Ă g_, rD is a connected G-equivariant cover of DpO_q;
‚ The central character of the unipotent ideal I0p

rDpO_qq equals to γO_.

As an immediate corollary, every special unipotent ideal is unipotent. The construction

of the map rD is expected to be a special case of symplectic duality, see Section 3.3 for more
details.

2.2. Unipotent Harish-Chandra bimodules. Let G be a complex reductive group, and

let rO be a G-equivariant cover of a nilpotent orbit O. Let B be a Upgq-bimodule endowed
with an ascending filtration

0 “ B´1 Ă B0 Ă B1 Ă . . . ,
ď

i

Bi “ B

compatible with the filtration on Upgq such that

UipgqBj Ă Bi`j, rUipgq,Bjs Ă Bi`j´1.
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Then grB has a structure of a graded Spgq-module. Such filtration is called good if grB is a
finitely generated Spgq-module, and a Upgq bimodule is called Harish-Chandra if it admits
a good filtration.

We say that an irreducible Harish-Chandra bimodule B is a unipotent Harish-Chandra

bimodule associated with rO if left and right annihilators of B are equal to I0p
rOq. We denote

the set of unipotent Harish-Chandra bimodules associated with rO by Unip
rOpGq. Define the

set UnippGq of unipotent Harish-Chandra bimodules to be the union of Unip
rOpGq for all

covers rO. Similarly, say that B is a special unipotent Harish-Chandra bimodule if both left
and right annihilators of B are equal to the same special unipotent ideal. We note that due to
Theorem 2.1.2, every special unipotent bimodule is unipotent. Below we catalogue the main
properties and the classification of unipotent Harish-Chandra bimodules. The reference for
all these statements is [LMM21].

Theorem 2.2.1. Assume that G is a linear classical group, and rO is a G-equivariant cover
of a nilpotent orbit. Then all bimodules in Unip

rOpGq are unitarizable.

Similarly to the analogous result of [BV85] for the special unipotent bimodules, the unipo-

tent bimodules annihilated by the unipotent ideal I0p
rOq are parameterized by the irreducible

representations of a finite group. Moreover, there is a geometric description of this group.
Namely, we have the following result.

Theorem 2.2.2. Let I be a unipotent ideal. There is a unique maximal G-equivariant cover
rO of a nilpotent orbit, such that I0p

rOq » I. Set Π to be the automorphism group of the

covering rO Ñ O. There is a natural bijection between the set Unip
rOpGq and the set of

irreducible representations of Π. Moreover, if V is the finite-dimensional representation of
Π, corresponding to B P Unip

rOpGq we have an isomorphism of graded G-equivariant Spgq-
modules

grpBq » pCrrOs b V qΠ.

Fix a point e P O. In [Vog91], Vogan conjectured that for any unipotent Harish-Chandra
bimodule B there is a finite-dimensional representation χ of πG1 pOq “ Ge{G

˝
e, such that there

is an isomorphism of G-representations B »G AlgIndGGe
χ. We note that this conjecture can

be implied from Theorem 2.2.2.

3. Future plans

3.1. Towards the description of Rep1pWq. Let Ω Ă Γ “ πG1 pOq be a subgroup, and let
rO Ñ O be the corresponding G-equivariant covering. As mentioned in Section 1.1, a result
of [Los10a] states that the set RepΩ

1 pWq of Ω-stable 1-dimensional representations of W is

in a bijection with the set of quantizations of rO. The following statement proposed by Ivan
Losev is the key conjecture for the study of Rep1pWq.

Conjecture 3.1.1. Let X be a 1-dimensional representation of W, rO be a G-equivariant

cover of O, and let D be a quantization of rO corresponding to X. Then one of the following
is true

‚ π1p
rOq Ĺ StabΓpXq;

‚ D can be extended to a quantization of SpecpCrrOsq, i.e. ΓpO,Dq is a quantization of

CrrOs.
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We note that for rO “ O the statement of the conjecture coincides with Theorem 1.1.1.
For g of type A, the conjecture is well-known and easy to prove. For the exceptional g the

conjecture is false, see [Pre13]. In an ongoing project with Ivan Losev we focus on proving
the conjecture for G “ SOn or G “ Sp2n. It is important to note that the conjecture
for classical types follows from the recent preprint [Top21] of Lewis Topley, where it is
proved using completely different methods. However, we believe that the methods that we
develop for this project can lead to additional results and can be applicable to many orbits
in exceptional types. We also expect that some of the results can be applied to more generic
symplectic singularities. Let us elaborate on the main ideas and results of this project.

The key part of proving Conjecture 3.1.1 is extending D to the codimension 2 G-orbits

in SpecpCrrOsq. First, we need to understand the corresponding singularities, that is the
main result of [Mat20], see Section 1.2 for details. Second, we analyze the restriction of

A “ ΓprO,Dq to slices to codimension 2 orbits in O.
Namely, let O1 Ă O be a codimension 2 orbit, and let Σ be the Kleinian singularity

corresponding to (an irreducible component of) the slice to O1. Set A: to be the restriction
of A to this slice, see [Los11b] for more details about the restriction functor ‚:.

Proposition 3.1.2. There is a quantization B of CrΣs, such that A: is a Harish-Chandra
bimodule of full support over B. Moreover, for every finite-dimensional Harish-Chandra
bimodule V over B we have

‚ HompV,A:q “ 0;
‚ Ext1

pV,A:q “ 0,

where the functors Hom and Ext1 are taken in the category of Harish-Chandra bimodules
over B.

The Hom and Ext vanishing properties of A: show that it is completely determined by the
restriction of A: to the regular locus of Σ, which coincides with the restriction of D. Thanks
to the classification of Harish-Chandra bimodules of full support over B, obtained in [Los21],
that allows us to describe A:. To proceed with the idea of the proof of Conjecture 3.1.1 we
need some additional notations.

The notion of birational induction given in Section 1.1 can be easily generalized to G-
equivariant covers of nilpotent orbits. Namely, for a Levi subgroup L Ă G and an L-

equivariant cover rOL of a nilpotent orbit OL Ă l, we say that rO is birationally induced

from pL, rOLq if rO is the open G-orbit in G ˆP prOL ˆ nq, where P is a parabolic subgroup

containing L, and n is the nilpotent radical of p. We say that a cover rO is birationally rigid
if it cannot be birationally induced from a proper Levi subgroup. Similarly, we can talk

about the quantizations of rO and CrrOs being parabolically induced from a quantization of
rOL and CrrOLs respectively. Say that rO is smoothly induced from pL, rOLq if rO and O are

birationally induced from pL, rOLq and pL,OLq respectively.
The following conjecture is a key step in proving Conjecture 3.1.1.

Conjecture 3.1.3. Set g to be a classical simple Lie algebra. Let rO be a G-equivariant cover

of O, and assume that rO is smoothly induced from pL, rOLq. Then any quantization D of rO
is parabolically induced from a quantization of rOL.

Let XL be an irreducible (possibly non-normal) affine variety with an open L-orbit rOL and
a finite L-equivariant map XL Ñ OL. Set Y “ G ˆP pXL ˆ nq, and remark that we have a
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G-equivarian finite map ρ : Y Ñ O. Let Osreg
be the union of O and all codimension 2 orbits

in O, and set Y sreg “ ρ´1pOsreg
q. Below is the proposed plan of proving Conjecture 3.1.3 due

to Ivan Losev.

‚ Use Proposition 3.1.2 to show that there is XL as above, such that D extends to a
quantization of Y sreg;

‚ Prove that any quantization D of Y sreg is uniquely determined by its classifying data:

restrictions of D to rO and the preimages of the slices to codimension 2 orbits in O;
‚ Construct a quantization DL of XL, such that the restriction of the parabolically

induced quantization of Y to Y sreg has the same classifying data as D.

We note that Conjecture 3.1.3 reduces the proof of Conjecture 3.1.1 to the case of rO that
cannot be smoothly induced from any proper Levi L Ă G. It is easy to show that in this case

SpecpCrrOsq is smooth outside of codimension 4. Such covers rO are expected to be handled
separately.

3.2. Towards the definition of a unipotent HC-module. Let G be a semisimple com-
plex Lie group, and g be the corresponding Lie algebra. Let σ : gÑ g be an involution, and
k “ gσ. Take K be a connected Lie group with a Lie algebra k, such that the embedding
k Ñ g lifts to either an embedding K ãÑ G or a group homomorphism K Ñ G with kernel
isomorphic to Z2. In a joint project with Ivan Losev and Lucas Mason-Brown we work to-
wards producing a definition of a unipotent HC pg, Kq-module. The key properties expected
from unipotent HC pg, Kq-modules are the following:

‚ The annihilator of a unipotent HC pg, Kq-module is a unipotent ideal in Upgq, defined
as in Section 2.1;

‚ A unipotent HC pg, Kq-module B is unitarizable;
‚ Any special unipotent HC module, i.e. a HC module annihilated by a special unipo-

tent ideal, is unipotent.

We note that contrary to the case of HC-bimodules, not any HC pg, Kq-module annihilated
by a unipotent ideal is unitarizable, counterexamples can be found for g “ sl2. However,
for many cases we have a good guess on which HC pg, Kq-modules should be considered
unipotent.

Fix a nilpotent orbit O Ă N , and assume that B is a HC pg, Kq-module with the asociated
variety AVpBq “ O. In [LMM21] we stated the following conjecture, supported by a lot of
computational evidence.

Conjecture 3.2.1. Suppose that codimOpO ´ Oq ě 4. Then every irredicble HC pg, Kq-
module annihilated by a unipotent ideal is unitarizable.

We expect that the property of being unitarizable and thus unipotent for a Harish-Chandra
module annihilated by a unipotent ideal is determined by the restriction to codimension 2
orbits in O. Let O1 Ă O be a codimension 2 orbit, and pick a point e P O1. Recall the
restriction functor ‚: for Harish-Chandra modules defined in [Los15, Section 6.1]. Similar
to a discussion in Section 3.1, ‚: should send Harish-Chandra pg, Kq-modules to Harish-
Chandra modules over a quantization B of a Kleinian singularity.

We focus on the situation when the corresponding singularity is of type A1. In many
cases there is an embedding SL2 Ðâ Ge, such that the induced action of SL2 on the slice
to O1 Ă O coincides with the standard SL2 action on C2{t˘1u. Then ‚: can be modified
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to a functor to HC Upsl2q-modules for sl2. In general, it is unclear at the moment what a
unipotent Harish-Chandra B-module should be.

In [LMM21, Section 10] we describe the induction of Harish-Chandra bimodules geomet-
rically. We expect to obtain a similar description for Harish-Chandra modules.

3.3. Symplectic duality for the Slodowy slice. Let X be a conical symplectic singular-
ity, and Y Ñ X be a Q-terminalization. To X one can assign the following data:

‚ PX “ H2pY reg,Cq – the Namikawa space of X;
‚ WX – the Namikawa-Weyl group of X acting on PX ;
‚ HX – the group of graded Hamiltonian automorphisms of CrXs;
‚ tX – the Lie algebra of a maximal torus TX Ă HX ;
‚ WX “ NHX pTXq{TX .

The symplectic duality is a conjectural duality between the conical symplectic singularities.
It is expected that if X_ is the symplectic dual of X, the following conditions hold:

‚ pX_q_ » X;
‚ PX » tX

_

and PX_ » tX ;
‚ WX »WX_ and WX » WX_ .

I plan to focus on a specific case of the symplectic duality. Let G be a semisimple complex
group, and G_ be the Langlands dual group. Let O_ Ă N_ be a nilpotent orbit, and
pick a nilpotent element e_ P O_. Let S_ to be a Slodowy slice to e_, and set X_ “

S_ X N_. Note that X_ is a conical symplectic singularity. Recall from Theorem 2.1.2

the extended Barbasch-Vogan-Lusztig-Spaltenstein duality rD : tnilpotent orbits in pg_qu ãÑ

tcovers of nilpotent orbits in gu, and set X “ SpecpCrrDpOqsq.

Proposition 3.3.1. X and X_ are symplectic dual to each other.

I plan to study the properties of the symplectic duality in this example. One of the
main topics of interest for me is the deformed Hikita conjecture. Let APX ,h be the universal

quantization of CrrDpO_qs, i.e. a CrPX , hs-algebra, such that all quantizations of CrrDpO_qs
are obtained by specializing to a point in PX . Choose a generic torus ν : Cˆ Ñ TX . Since
TX acts on APX ,h, ν produces a grading on APX ,h. Construct the Cartan quotient by setting

CνpAPX ,hq “ A0
PX ,h{

ÿ

ią0

A´i
PX ,h

Ai
PX ,h.

Let Y _ be a Q-terminalization of X_. The main goal of this project is to prove for X_ “

S_ X N_ and X “ SpecpCrrDpOqsq the following conjecture proposed by Nakajima, see
[KTWWY19, Conjecture 8.9].

Conjecture 3.3.2. There is a CrptXq˚ ‘PX , hs-linear isomorphism

CνpAPX ,hq » H˚

TX_ˆCˆpY
_
q.
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