
LECTURE 4.5: SOERGEL’S THEOREM AND SOERGEL BIMODULES

DMYTRO MATVIEIEVSKYI

Abstract. These are notes for a talk given at the MIT-Northeastern Graduate Student Seminar
on category O and Soergel bimodules, Fall 2017.
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1. Goals and structure of the talk

This is the continuation of a talk given week ago. Last week we defined Soergel’s V-functor,
stated three theorems of Soergel and proved the first one. The exposition of this talk will be as
follows. In Section 2 we will recall the key points of the last talk. In Section 3 and 4 we will prove
the second and the third theorem. In Section 5 we define Soergel modules and bimodules. We will
show that the category of Soergel modules is equivalent to the subcategory of projective objects in
the principal block O0.

2. Reminder of last time

First, let me list notations and objects introduced in the last talk.
We set ∆min to be the Verma module corresponded to the longest element in the Weyl group and
Pmin its projective cover.
We denote by C the coinvariant algebra C[h]/(C[h]W+ ) where C[h]W+ ⊂ C[h]W is the ideal of all
elements without constant term.
For λ + ρ, µ + ρ dominant and Wλ ⊂ Wµ we have defined the extended translation functors

T̃λ→µ : Õλ → Õµ where Õλ is the infinitesimal block of the category O over U(g) ⊗C[h]W C[h]

corresponding to λ. The extended translation functor T̃λ→µ has a left adjoint T̃ !
λ→µ and a right

adjoint T̃ ∗λ→µ. We have shown that extended translation functors are transitive in the following

sense: T̃λ→ν = T̃µ→ν ◦ T̃λ→µ.
1
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The Soergel V-functor V : O0 → End(Pmin)opp -mod is defined by V(•) = Hom(Pmin, •).

The main result of the previous talk was the following theorem.

Theorem 2.1. EndO(Pmin) ' C.

In the proof we have shown that for λ = 0 and µ = −ρ the extended translation functor T̃λ→µ
coincides with the V functor under equivalences O0 ' Õ0 and Õ−ρ ' C -mod. We proved the
following fact.

Proposition 2.2. The adjunction unit map Pmin → V∗V(Pmin) is an isomorphism.

The main goal of this talk is to prove the following two theorems of Soergel.

Theorem 2.3. V is fully faithful on projectives.

Theorem 2.4. V(Pi•) ' V(•) ⊗
C[h]si

C[h].

3. V is fully faithful

In this section we will prove Theorem 2.3. In the proof we will need a criterion for a module to
be standardly filtered.

3.1. Criterion for a standardly filtered module. It was shown in Daniil’s talk that Oλ is a
highest weight abelian category.

Proposition 3.1. In the category Oλ for any standard object ∆(ν) and any costandard object ∇(µ)
we have Extn(∆(ν),∇(µ)) = 0 for all n > 0.

Proof. For n = 1 that was proved in Daniil’s talk. For n > 1 we will prove it by the decreasing
induction on ν. Suppose that we have proved it for all ν ′ > ν. The projective cover P (ν) of
∆(ν) has a standard filtration such that K := Ker(P (ν) → ∆(ν)) is filtered by ∆(ν ′) for ν ′ > ν.
Applying long exact sequences at every step of the filtration we get Extn(K,∇(µ)) = 0. Now for
the short exact sequence 0 → K → P (ν) → ∆(ν) → 0 we have the corresponding long exact
sequence 0 = Extn−1(K,∇(µ)) → Extn(∆(ν),∇(µ)) → Extn(P (ν),∇(µ)) = 0. That implies the
proposition. �

We will give a criterion for an object M ∈ O to be standardly filtered.

Proposition 3.2. An object M ∈ O is standardly filtered iff Ext1(M,∇j) = 0 for all j.

Proof. ”⇒”: This implication is an exercise.
”⇐”: We will use the induction on the number of simple objects in M . Let λ be a maximal

weight such that L(λ) is a composition factor in M . We set C to be the subcategory spanned by
all simples L(µ) for µ 6> λ. Let N be the maximal quotient of M that lies in C and let K be
the kernel 0 → K → M → N → 0. Note that K has no nonzero quotients lying in C. For any
µ we have the following long exact sequence Hom(K,∇(µ)) → Ext1(N,∇(µ)) → Ext1(M,∇(µ)).
If µ 6> λ, then Hom(K,∇(µ)) = Ext1(M,∇(µ)) = 0, so Ext1(N,∇(µ)) = 0. By the induction
hypothesis, N is standardly filtered. Therefore Ext2(N,∇(µ)) = 0. We have an exact sequence
Ext1(M,∇(µ))→ Ext1(K,∇(µ))→ Ext2(N,∇(µ)) that implies Ext1(K,∇(µ)) = 0. Let L(λ)k be
the maximal semi-simple quotient of K. The surjective map K → L(λ)k induces a map ∆(λ)k → K
because ∆(λ) is projective in the category spanned by L(λ) and C. The cokernel of this map is
in C, therefore it is 0. Let K1 be a kernel of this map, so 0 → K1 → ∆(λ)k → K → 0 is
an exact sequence. Note that K1 ∈ C. For any µ 6≥ λ we have the following exact sequence
0 = Hom(∆(λ)k,∇(µ)) → Hom(K1,∇(µ)) → Ext1(K,∇(µ)) = 0, so Hom(K1,∇(µ)) = 0. But
then K1 = 0, so ∆(λ)k → K is an isomorphism. Therefore M has a standard filtration as an
extension of N by K. �
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3.2. Proof ot Theorem 2.3. Let us give a plan of the proof first. Recall that V∗ stands for the
right adjoint of V. We set T := T0→−ρ and T ∗ := T−ρ→0. We need to prove that the natural
map Hom(M,N)→ Hom(V(M),V(N) is an isomorphism when M , N are projective. As this map
factors through Hom(M,N) → Hom(M,V∗V(N)) ' Hom(V(M),V(N) it is suffices to prove that
V∗V(M) 'M for any projective M . From Proposition 2.2 Pmin ' V∗V(Pmin). We will show that

any projective module M is isomorphic to the kernel of a map P⊕kmin → P⊕nmin. Applying the left
exact functor V∗V we present of V∗V(M) as the kernel of the same map, so V∗V(M) 'M .

Let us start with the claim that any projective module M can be presented as the kernel of
a map P⊕kmin → P⊕nmin. We state that the injective map into P⊕kmin can be given by applying the
adjunction unit map M → T ∗T (M).

Lemma 3.3. For a standardly filtered object M the adjunction unit map M → T ∗T (M) is injec-
tive. Analogously for a costandardly filtered object N the adjunction counit map TT ∗(N) → N is
surjective.

Proof. We will prove the injectivity of the adjunction unit. The second statement is just dual.
We know that the map T (M) → TT ∗T (M) is an injection because T ∗ is right adjoint to T .

Therefore the kernel of the adjunction unit is anihilated by T . The socle of any standardly filtered
module M is a direct sum of some copies of ∆(w0 · 0). But T (∆(w · 0)) = ∆(−ρ), so for any N in
a socle of M we have T (N) 6= 0. Therefore the adjunction unit M → T ∗T (M) is an injection. �

Corollary 3.4. For any standardly filtered M we have T ∗T (M) ' P⊕kmin for some k, so M can be

embedded in P⊕kmin.

Lemma 3.5. For any projective object P ∈ O0, the quotient T ∗T (P )/P has a standard filtration.

Proof. By Proposition 3.2, T ∗T (P )/P has a standard filtration iff Ext1(T ∗T (P )/P,∇(w · 0)) for
all w ∈ W . For the short exact sequence 0 → P → T ∗T (P ) → T ∗T (P )/P → 0 we consider the
corresponding long exact sequence.

Hom(T ∗T (P ),∇(w·0))→ Hom(P,∇(w·0))→ Ext1(T ∗T (P )/P,∇(w·0))→ Ext1(T ∗T (P ),∇(w·0)).

The object T ∗T (P ) is projective, so Ext1(T ∗T (P ),∇(w · 0)) = 0.
Therefore it is enough to show that the map Hom(T ∗T (P ),∇(w · 0)) → Hom(P,∇(w · 0)) is

surjective. By the biadjointness Hom(T ∗T (P ),∇(w · 0)) ' Hom(P, T ∗T (∇(w · 0))). Now the map
Hom(P, T ∗T (∇(w · 0)))→ Hom(P,∇(w · 0)) is induced by the adjunction counit T ∗T (∇(w · 0))→
∇(w · 0). This map is surjective by Lemma 3.3.

Since P is projective Hom(P, T ∗T (∇(w·0)))→ Hom(P,∇(w·0)) is surjective, so Hom(T ∗T (P ),∇(w·
0)) → Hom(P,∇(w · 0)) is a surjection. Therefore Ext1(T ∗T (P )/P,∇(w · 0)) = 0 and the lemma
follows. �

Corollary 3.6. For any projective object P ∈ O0 there is an exact sequence 0→ P → P⊕kmin → P⊕nmin
for some k and n.

Proof. By Corollary 3.4 we can embed P into T ∗T (P ) ' P kmin for some k. The cokernel of this map

by Lemma 3.5 is standardly filtered. Applying Corollary 3.4 for P
k
min /P we finish the proof. �

Proposition 3.7. For any projective module M we have V∗V(M) 'M .

Proof. Let M be the kernel of a map ϕ : P⊕kmin → P⊕nmin. Under the identification Pmin
∼−→ V∗V(Pmin)

we have V∗V(ϕ) = ϕ. Since V∗ is right adjoint, it is left exact. Hence the functor V∗V is left exact,
so V∗V(M) is the kernel of ϕ.

�

Corollary 3.8. The functor V is fully faithful on projectves.
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4. Soergel’s functor vs reflection functor

In this section we prove that V : O0 → C -mod intertwines the reflection functor Pi with
• ⊗C[h]si C[h].

The scheme of the proof is as follows.
1) Let µ be an integral singular element of h∗ such that µ + ρ is dominant. So we have the

extended translation functors T̃0→µ : O0 → Õµ and Ṽµ := T̃µ→−ρ : Õµ → C -mod. By transitivity,

V = Ṽµ ◦ T̃0→µ. Let P̃min,µ denote the projective cover of Lmin,µ in Õµ. We will show that the

functors T̃0→µ,Vµ induce isomorphisms EndO(Pmin)
∼−→ EndÕ(P̃min,µ)

∼−→ C.

2) Let Pmin,µ denote the projective cover of Lmin in Oµ so that P̃min,µ = C[h] ⊗C[h]Wµ Pmin,µ.

We will use this description of P̃min,µ together with 1) to identify EndO(Pmin,µ) with CWµ so that
we get the functor Vµ = HomO(Pmin,µ, •) : Oµ → CWµ -mod.

3) We will deduce from 1) and 2) that the following diagram is commutative.

O0
T0→µ //

V
��

Oµ
Vµ
��

C -mod
frg // CWµ -mod

.

4) We use 3) together with the adjointness and the second Soergel theorem to show that the
following diagram is commutative.

Oµ
Tµ→0 //

Vµ
��

O0

V
��

CWµ -mod
C[h]⊗

C[h]Wµ
•
// C -mod

.

Then the proof of Theorem 2.4 will follow from steps 3 and 4 and the definition of Pi as Tµ→0 ◦
T0→µ, where i is the only index with 〈µ+ ρ, α∨i 〉.

4.1. Endomorphisms of P̃min,µ. Steps 1 and 4 of the proof will need the following lemma.

Lemma 4.1. T0→µ(Pmin) = P
|Wµ|
min,µ.

Proof. These two objects have the same K0-classes: both are equal to
∑

w∈W [∆(w · µ)]. But
the classes of indecomposable projectives in K0 are linearly independent because of the upper
triangularity property for projectives. So if the classes of two projectives are equal, then the
projectives are isomorphic. �

Proposition 4.2. The following is true:

(1) The functor T̃0→µ : O0 → Õµ maps Pmin to P̃min,µ and induces an isomorphism End(Pmin)
∼−→

End(P̃min,µ).

(2) Similarly, the functor Ṽµ : Õµ → C -mod maps P̃min,µ to C and induces an isomorphism

EndÕ(P̃min,µ)
∼−→ C.

Proof. Let us prove (1).

Lemma 4.3. Let wµ0 be the longest element of Wµ. We set u = w0w
µ
0 , so that ∆(u · 0) is the

bottom factor in the standard filtration of Tµ→0(∆min,µ). Then we have T̃ ∗0→µ(∆min,µ) = ∆(u · 0).

Proof. Analogously to Proposition 3.18 of the last talk, ∆(u · 0) is the intersection of kernels of all
αi acting on Tµ→0(∆min,µ) for i such that 〈µ + ρ, α∨i 〉 = 0. For every such i we have a filtration

of Tµ→0(∆min,µ) by ∆̃w,i = Tµi→0(∆(w · µi)) where 〈µi + ρ, α∨j 〉 = 0 iff i = j. On each of ∆̃w,i
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the action of αi kills only the bottom factor. Therefore the intersection of kernels of all αi is the
bottom factor. �

Applying this lemma we get
dim Hom(T̃0→µ(Pmin),∆min,µ) = dim Hom(Pmin, T̃

∗
0→µ(∆min,µ)) = dim Hom(Pmin,∆(u · 0)) = 1

where the last equality holds by Corollary 3.6 of the previous talk. Analogously to the final part
of the proof of Theorem 2.1 we have a surjective map φ : P̃min,µ → T̃0→µ(Pmin). Therefore it is
enough to show that the induced map on restrictions to Oµ is an isomorphism. But that follows

from Lemma 4.1. The isomorphism T̃0→µ : Pmin
∼−→ P̃min,µ yields EndO(Pmin)

∼−→ EndÕ(P̃min,µ).

Let us prove (2). We know that Ṽµ ◦ T̃0→µ(Pmin) = C from the previous lecture, and also that

T̃0→µ(Pmin) = P̃min,µ. It follows that Ṽµ(P̃min,µ) = C. And also we know that V = Ṽµ ◦ T̃0→µ
gives rise to an isomorphism EndO(Pmin)

∼−→ C. Together with (1) this implies that Ṽµ gives rise

to an isomorphism End(P̃min,µ)
∼−→ C. �

4.2. Endomorphisms of Pmin,µ.

Lemma 4.4. We have a natural isomorphism EndO(Pmin,µ) ∼= CWµ.

Proof. Recall that we can view P̃min,µ as an object in Oµ (formally, via the forgetful functor Resµ),

the group Wµ acts on P̃min,µ ∈ Oµ by automorphisms, and Pmin,µ = P̃
Wµ

min,µ. We have

C = HomÕµ(P̃min,µ, P̃min,µ) = HomÕµ(C[h]⊗C[h]Wµ Pmin,µ, P̃min,µ) =

= HomOµ(Pmin,µ, P̃min,µ).

By the first paragraph of the proof, Wµ acts on the final expression and the invariants are
HomOµ(Pmin,µ, Pmin,µ). Both actions of Wµ on the right hand side and on C corresponds to

the diagonal action on HomÕµ(P̃min,µ, P̃min,µ). The lemma follows. �

4.3. The functor V vs projection to the wall. Let frgµ : C -mod → CWµ -mod denote the
forgetful functor. First we note that

(1) frgµ ◦ Ṽµ ∼= Vµ ◦ Resµ : Õµ → CWµ -mod .

Indeed, by the construction of the isomorphism EndO(Pmin,µ) ∼= EndÕ(P̃min,µ)Wµ in the previous
subsection, both functors in (1) are HomO(Pmin,µ,Resµ(•)).

From here we deduce that Vµ ◦ T0→µ ∼= frgµ ◦ V from (1). Indeed, T0→µ = Resµ ◦T̃0→µ. So

Vµ ◦ T0→µ = Vµ ◦ Resµ ◦T̃0→µ = [(1)] = frgµ ◦ Ṽµ ◦ T̃0→µ = frgµ ◦ V.

4.4. The functor V vs translation from the wall. In this subsection we will deduce

(2) V ◦ Tµ→0(•) ∼= C[h]⊗C[h]Wµ Vµ(•),

an equality of functors Oµ → C -mod, from Vµ ◦T0→µ ∼= frgµ ◦V. Let us take the left adjoint of the

previous equality, we get Tµ→0 ◦V!
µ
∼= V! ◦ frg!µ. Now compose with V on the left. As for any finitely

generated C-module M there is an exact sequence Cn → Ck → M → 0 we can analogously to
Proposition 3.7 show that the adjunction unit map M → V ◦V!(M) is an isomorphism. So we get

V◦Tµ→0◦V!
µ
∼= frg!µ. Now compose with Vµ on the right to get V◦Tµ→0◦V!

µ◦Vµ = frg!µ◦Vµ. In the

right hand side we already have the right hand side of (2) because frg!µ = C⊗CWµ • ∼= C[h]⊗C[h]Wµ •.
So to establish (2), we need to show that V◦Tµ→0 ◦V!

µ ◦Vµ ∼= V◦Tµ→0. We have the adjunction

counit morphism V!
µ◦Vµ → id. This gives rise to a functor morphism V◦Tµ→0◦V!

µ◦Vµ → V◦Tµ→0.

We need to show that V ◦ Tµ→0 annihilates the kernel and the cokernel of V!
µ ◦Vµ(M)→M . The

induced morphism Vµ ◦ V!
µ ◦ Vµ(M)→ Vµ(M) is an isomorphism (it is surjective by the standard
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properties of adjointness and it is injective because id
∼−→ Vµ ◦V!

µ, which is proved in the same way

as for the functor V). So the kernel and the cokernel of V!
µ ◦ Vµ(M)→M are killed by Vν .

We claim that if HomO(Pmin,µ, L) = 0, then HomO(Pmin, Tµ→0(L)) = 0, this will finish the proof
of (2). Note that HomO(T0→µ(Pmin), L) = HomO(Pmin, Tµ→0(L)). By Lemma 4.1 T0→µPmin ∼=
P
|Wµ|
min,µ. The claim follows.

4.5. Proof of Theorem 2.4. Now we know that Vµ◦T0→µ ∼= frgµ◦V and V◦Tµ→0
∼= V(C[h]⊗C[h]Wµ

•). Take µ such that i is the only index with 〈µ+ ρ, α∨i 〉 = 0. Then

V ◦ Pi(•) ∼= V ◦ Tµ→0 ◦ T0→µ(•) ∼= C[h]⊗C[h]si (Vµ ◦ T0→µ(•))
∼= C[h]⊗C[h]si V(•).

5. Soergel modules and bimodules

We are interested in the image of projectives under the Soergel’s functor V.

Definition 5.1. For a sequence w = (si1 , si2 , . . . , sik) of simple reflections we set BSw := C[h]⊗C[h]si1
C[h]⊗C[h]si2 . . .⊗C[h]sik C[h]. This is called a Bott-Samelson bimodule. By a Bott-Samelson module

we mean BSw ⊗C[h] C for some w.

Definition 5.2. We define the category SBim of Soergel bimodules as the minimal subcategory in
the category of graded C[h]-bimodules closed under taking direct sums, direct graded summands and
shifts of grading containing all Bott-Samelson bimodules. Morphisms in SBim are graded morphisms
of C[h]-bimodules.

Similarly, we define the category SMod of Soergel modules as the subcategory in the category
of graded left C[h]-modules closed under taking direct sums, direct graded summands and shifts of
grading containing all Bott-Samelson modules. Morphisms in SBim are graded morphisms of left
C[h]-modules.

Definition 5.3. We define the category SModungr of ungraded Soergel modules as the category
with the same set of objects as in SMod and C[h]-linear morphisms that do not necessarily preserve
grading.

Theorem 5.4. The functor V gives an equivalence of the subcategory O0 − proj ⊂ O0 consisting
of projective objects in the principal block of category O and SModungr.

To prove this theorem we need to compare indecomposable objects of SMod and SModungr. We
will use the following proposition.

Proposition 5.5. Let A be a positively graded finite dimensional algebra over C and let M be a
graded finite dimensional A-module. If M is indecomposable as a graded module, then it’s inde-
composable as a module.

Proof. Consider the algebra EndA(M) of all A-linear endomorphisms of M , it is finite dimensional
and graded. The radical R is graded. Indeed, the grading gives an action of the one dimensional
torus C× on EndA(M) by automorphisms. Then the quotient EndA(M)/φt(R) = φt(EndA(M)/R)
is semi-simple. Therefore R ⊂ φt(R) and so radical is graded.

The moduleM is indecomposable iffM/R = C. Indeed, ifM = M1⊕M2 then x idM1 +y idM2 6∈ R
for any (x, y) 6= (0, 0). This quotient Q is a semi-simple algebra, so it is isomorphic to a direct sum
of matrix algebras. As R is graded the quotient Q is equipped with an algebra grading.

Lemma 5.6. Let F be an algebraically closed field of characteristic 0. Let B be the direct sum
of matrix algebras over F equipped with an algebra grading. Then the degree 0 part is the sum of
matrix algebras of the same total rank as B.
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Proof. Every grading of the matrix algebra over a characteristic 0 algebraically closed field is inner
because any derivation is inner. So the same holds for a direct sum of matrix algebras as well. If
ad(x) defines a grading then x is diagonalizable and up to adding a central element has integral
eigenvalues. Elements of degree 0 are exactly elements commuting with x. The centralizer of x in
a matrix algebra is the direct sum of the endomorphism algebras of the eigenspaces. The lemma
follows. �

If M is decomposable then dimQ ≥ 2 and the lemma implies that we have a degree 0 non-trivial
idempotent in Q. Now we can lift it to an idempotent in the degree 0 part of EndA(M). But there
are no such nontrivial idempotents since M is indecomposable as a graded module.

�

Applying this proposition to A = C we get the following corollary.

Corollary 5.7. Indecomposable summands of Bott-Samelson modules are isomorphic to its inde-
composable graded summands.

5.1. Proof of Theorem 5.4. Let w = si1 . . . sik be a reduced expression of w ∈ W . We set
Pw := Pik ◦ Pik−1

◦ . . . ◦ Pi1(∆(0)). By Theorem 6.3 from Chris’s talk, Pw = P (w · 0)⊕
⊕
P (w′ · 0)

for some w′ ≺ w. By Theorem 2.4 BSw ⊗C[h] C = V(Pw). Therefore BSw ⊗C[h] C = V(P (w · 0))⊕⊕
V(P (w′ ·0)). We claim that every summand V(P (w′ ·0)) is indecomposable. Indeed, by Theorem

2.3 EndC(V(P (w′ · 0))) ' EndO(P (w′ · 0)). But the latter endomorphism algebra does not have
nontrivial idempotents because P (w′ · 0) is indecomposable.
Then I have a decomposition of BSw in the direct sum of indecomposables V(P (w′ · 0)). On the
other hand I have a decomposition of BSw in the direct sum of indecomposable (as graded modules)
Soergel modules. By Corollary 5.7 the latter one is also a decomposition in the direct sum of
indecomposables. But by the Krull-Schmidt theorem for modules there is a unique decomposition
of C⊗C[h]BSw in the direct sum of indecomposables up to a permutation. Therefore V(O0−proj) =
SModungr. In other words, V : O0 − proj → SModungr is essentially surjective on objects. By
Theorem 2.3 V is fully faithful. So it is a category equivalence.

Corollary 5.8. Indecomposable objects Sw in SModungr are labelled by elements of W . We have
V(P (w · 0)) = Sw.

Corollary 5.9. We have C⊗C[h] BSw = Sw ⊕
⊕
Sw′ for some w′ ≺ w.

Corollary 5.10. Let g = so2n+1 be a Lie algebra of type Bn and g
′

= sp2n a Lie algebra of type
Cn. Then principal blocks O0 and O′0 of corresponding categories O are equivalent.

Proof. By Theorem 5.4 we have equivalences O0−proj ' SModungr,g and O′0−proj ' SModungr,g′ .

But categories SModungr,g and SModungr,g′ depend only on the Weyl group W and therefore coin-

cide. Therefore O0 − proj ' O
′
0 − proj. The corollary follows. �
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