LECTURE 4: SOERGEL’S THEOREM AND SOERGEL BIMODULES

DMYTRO MATVIEIEVSKYI

ABSTRACT. These are notes for a talk given at the MIT-Northeastern Graduate Student Seminar
on category O and Soergel bimodules, Fall 2017.
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1. GOALS AND STRUCTURE OF THE TALK

The main goal of this talk is to introduce Soergel’s V-functor and study its properties. The
exposition will be as follows. In Section 2 we define Soergel’s V-functor and state three theorems of
Soergel. In Section 3 we will prove the first of them. For this purpose we will construct extended
translation functors that naturally extend translation functor to bigger categories.

2. SOERGEL V-FUNCTOR

Let g be a semisimple Lie algebra, W its Weyl group and wg € W the longest element. By
Prin := P(wp - 0) we denote the projective cover of Ly, := L(wg - 0).

Definition 2.1. The Soergel V-functor is a functor between the principal block Og and the category
of right modules over End(Pyy,) given by V(e) = Hom(Ppin, ®).

We set C' := C[h]/(C[h)}) where C[h])¥ C C[h]" is the ideal of all elements without constant
term and (C[h)}) = C[h]C[h]"Y. This is called the coinvariant algebra. The main goal of the talk
is to prove some properties of V.

Theorem 2.2. Endp(Ppin) ~ C.
Theorem 2.3. V is fully faithful on projectives.

Theorem 2.4. V(P;e) ~ V(e) ® Cl[h].
Clp]=
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3. ENDOMORPHISMS OF Pyin

In this section we prove that Endp(Ppin) = C.
Before we proceed to the proof we need to observe some properties of Oy, Py and C. This is
done in next three subsections.

3.1. Qg is a highest weight category. Recall that we have a Bruhat order on the Weyl group W.
For an element w € W we say that w = (s;,, Sis, - - - , 8i,,) is an expression of w if w = s, 84, . .. 54,
The minimal number [(w) of elements in the expression of w is called length of w. We say that the
expression w is reduced if [(w) = k.

Definition 3.1. Consider w1, wo € W. We say w1 = wa if there are reduced expressions wi of wy
and w of wa such that wy is a subexpression of ws.

In this subsection we will prove that the principal block Oy is a highest weight category. Let us
recall the definition of a highest weight category from Daniil’s talk.

Definition 3.2. Consider an abelian category C which has a finite number of simple objects, enough
projectives and every object has finite length (equivalently C ~ A-mod, where A is a finite dimen-
sional associative algebra). The highest weight structure on such a category, is a partial order <
on the set of simple objects Irr(C) and the set of standard objects Ar, L € Irr(C) such that:

° Homc(AL,AL/) #0=L <L and Endc(AL) =C.

e The projective cover Pr, of L admits an epimorphism onto Ar and Ker(Pr, — Ap) admits a
filtration by Ay, with L < L.

Proposition 3.3. The category Oq is a highest weight category with respect to the opposite Bruhat
order.

Proof. Chris has proved that P(w-0) is a direct summand in Py ... P1A(0). Note that all standards
occurring in the bigger projective have labels w’ < w in the Bruhat order and w appears only once.
So K := Ker(P(w-0) — A(w - 0)) is filtered with A(w’ - 0) for w’ < w.

It remains to show that Hom(A(w - 0),A(w’ - 0) # 0 = w’ < w. Note that in the opposite
direction it was proved in the first talk of the seminar. If Hom(A(w - 0),A(w’ - 0) # 0 then
the induced map on L(w - 0) is non-trivial, so [A(w’ - 0) : L(w - 0)] # 0. By BGG reciprocity
[A(w-0): L(w-0)] = (P(w-0): A(w'-0)), so w < w. O

3.2. Properties of P,,;,. For the longest element wy € W we have the corresponding minimal
element A 1= wo - A. For that element we have Apipn := A(Anin) =~ Limin := L(Amin) =~ Viin ==
V(Amin). Let P, be a projective cover of A,yy,. In his talk Chris defined translation functors
T\, In this talk we will be especially interested in translations to the most singular case when
= —p. Let us set a notation O for O,,. Note that every object in O_, is a direct sum of some
copies of A(—p) = L(—p), so O_, is equivalent to the category of vector spaces. We set T':= Th_,_,
and T™ := T_,_,\. These functors are exact and biadjoint. We want to find a description of the
projective cover P,,;, using translations functors.

Proposition 3.4. P, = T*(A(—p)).

Proof. A(—p) is projective object in O_, and the functor 7% is left adjoint to the exact functor
T. Therefore T*(A(—p)) is projective. It is enough to show that dim Hom(7T*(A(—p)),L) = 1 if
L = L,,;, and 0 else.

Let us compute Hom(T*(A(—p)), L). Since T™* is left adjoint to T we have Hom(T*(A(—p)), L) ~
Hom(A(—p),T(L)). From Chris’s talk we know that T'(Lyn) ~ A(—p) and T (L) = 0 for any other
simple L that finishes the proof. 0
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Remark 3.5. A(—p) is self-dual object in the category O_, and T* commutes with duality. Anal-
ogous to Proposz'tz'on statement shows that Py, = T*(A(—p)) is the injective envelope of Apin.
In fact, there are no other projective-injective elements in Oy.

Corollary 3.6. V(A(w - 0)) is a one-dimensional End( Py )-module for any w € W.
We will show later that such module is unique.

Proof. V(A(w-0)) = Homo, (T*A(—p), A(w-0)) = Homo_,(A(—p), TA(w-0)). Chris has proved in
his talk that TA(w-0) = A(—p). Therefore dim V(A(w-0)) = dim Homop_,(A(—p),A(-p)) =1. O

Recall from Daniil’s talk the definition of a standard filtration.

Definition 3.7. An object M € O is standardly filtered if there is a chain of submodules 0 =
FobM Cc FiM C FsM C ... C F, M = M such that each FiHM/FiM 18 1somorphic to a Verma
module.

Proposition 3.8. Every Verma module A(w - 0) appears in a standard filtration of Py, ezxactly
one time.

Proof. By BGG reciprocity we have
(Prin : A(w - 0)) = [A(w - 0) : Lin) = [A(w - 0) : Apin] = 1 where the last equality was proved in
the proof of Proposition 5 from the first lecture. (|

3.3. Properties of C.

Lemma 3.9. The following are true.

(1) C is a local commutative algebra, in particular, it has a unique irreducible representation
(we will just write C for that irreducible representation).

(2) C 2 H*(G/B,C).

(3) There is a nonzero element w € C' such that for any other element fi € C, there is fo € C
with f1f2 = Ww.

(4) The socle (=the mazimal semisimple submodule) of the regular C-module C' is simple, equiv-
alently, by (a), dimHom(C, C) = 1.

(5) We have an isomorphism C = C* of C-modules. In particular, C is an injective C-module.

Proof. (1) is clear. To prove (2), let us recall that H*(G/B, C) is generated by H*(G/B,C) = b*
(in particular, there’s no odd cohomology and the algebra H*(G/B, C) is honestly commutative).
So we have an epimorphism C[h] - H*(G/B, C). The classical fact is that the kernel is generated
by C[h)YY so C = H*(G/B,C).

Let us prove (3). We claim that this holds for the cohomology of any compact orientable manifold
M. Indeed, dim H'P(M,C) = 1, let us write w for the generator. The pairing (o, 8) := [, « A S
is nondegenerate on H*(M,C). (3) follows.

By (3) any nonzero C-submodule of C' contains w. This implies (4).

Let us prove (5). Consider the linear isomorphism C = C* given by (-,-). Note that the form
(+,-) is invariant: (ya, 8) = (a,yB). So the map C' — C* is C-linear. O

3.4. Strategy of proof. Our strategy of proving Endp(Pin) = C is as follows.

1) We define a functor (an extended translation functor) Tp_,_, : Og — C-mod with the property
that frg o ’_]N’o_>_p = To——p, where To,_, : Op — O_, is the usual translation functor, and frg :
C'-mod — Vect is the forgetful functor (recall from the beginning of Subsection 3.2 that O_,, is the
semisimple category with a single simple object, so it is the category Vect of vector spaces).

2) Since F := T(H,p is an exact functor between categories that are equivalent to the categories
of modules over finite dimensional algebras, it admits left and right adjoint functors to be denoted
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by F', F*. We will show that P, = F'(C) = F*(C). Therefore we have a natural map C =
Ende mod(C, C) — Endp(F*(C), F*(C)) = Endo(Pmm)

3) We will establish an isomorphism C' = End(P,,i,) by showing that F(Ppi,) = C. A key
ingredient for the latter is to show that F*(C) = A(0).

3.5. Extended translation functors. The functor F = T 0—s—p is a special case of more general
functors known as the extended translation functors.

Consider the dotted action of W on h. We set U := U(g) ®cppw C[h] with the action of Clp"
on U(g) by the Harish-Chandra isomorphism. Let Jy be the maximal ideal corresponding to A in
C[p] and I}y the maximal ideal corresponding to W - A in C[h]" = C[h/W]. We define U -mod,
as the category of ﬁmtely generated U-modules M such that .J YM = 0 for n big enough. Let
O, be a subcategory of U-mod) consisting of U-modules M such that M € Oy considered as a
U(g)-module. The goal of this subsection is to construct and study an extended translation functor
T)\—W O ) g O
Let Wy C W be a stabilizer of \. We consider the algebra of Wy-invariants U"> := U (9) Rcpw
C[h]"™* and JWA = JyNC[H]">. Let U"* -mod, be a category of finitely generated U"V*-modules

M such that (JWA)”M = 0 for n big enough. We set (’))\ be a subcategory of UW-mody
consisting of U"*-modules M such that M € Oy considered as a U (g)-module. We have natural
restriction functors Resy : Oy — O, and ResKVA : OKVA — O,.

Wi

Proposition 3.10. The functor Res)

Proof. The natural map h — h/W factors through h — b/Wy — h/W. The map h/W, — h/W
is unramified, so the formal neigbourhood of a point W - XA € h/W is canonically isomorphic to a

formal neighborhood of a point Wy-A € h/W,. In other words, Jim C[h]w/ll’}\‘ ~ lim C[h]WA/(Jj\/VA)”.

Hence on any M € O, we have an action of @C[h]wk/(tfj\/v*)" that makes M an object of (’N)KVA

That gives a functor quasi-inverse to Resf\v*. O

s an equivalence of categories.

Remark 3.11. The functor Resy(e) has a natural left adjoint Indg:ﬂwk(o) and a natural right

adjoint Homgw, (C[b], o).

Corollary 3.12. For A+ p regular the functor Resy gives an equivalence of categories Oy and Oy,
Lemma 3.13. For the most singular case we have @,p ~ (C'-mod.

Proof. Every object M € O_, is of form M ~ A(—p) ® V. Therefore the action of the central
subalgebra Z(U(g)) = C[h]" on M factors through C[h]"" — C[h]" /C[h]}¥ = C and O_, consists
of U_, ® C-modules from the category O_,. Therefore we have the functor C'-mod — @_p given
by A(—p) @ e and the functor O_, — C-mod given by Homy_,(A(—p),e). It is easy to check that
these two functors are quasi-inverse. O

Therefore we have a translation functor T, : @WA — @W“ For integral A, p such that A+p and
f+ p are dominant and W) C W), we want to extend it to the translation functor T,\_m (9)\ — (’)
We claim that for M € Oy we have a natural structure of a U-module from the category (’) on
N := T, Res(M) constructed in the following way. We already have an action of Uy p ' Let pyy
be an endomorphism of C[h] induced by the map p,_x(z) = x +pu — A for x € h. For M € O\
we have a natural action of C[h] by U-module endomorphisms on Res(M) that factors through
C[b]/J} for n large enough. By the functoriality we have an action of C[h] on N = T)_,, Res(M).
We twist this action with p,_y, so it factors through C[h]/J};. Let us denote this action as z * m.
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Example 3.14. Let g = sly. Let x be the generator of C[p]. We are interested in the action of
C[h] on P(—2) and induced action on To_,_1(P(—2)). Let us choose a basis of P(—2), for which
the weight diagram is as below.

The Casimir element z° + 2x € (C[f)]w acts on each v; by 0 and sends w_op to 2v_op. Then x acts
by moving the diagram to the left, i.e. z(vg) = 0 and x(wy) = vgp. Tos—1(P(=2)) ~ A(=1)? as
U(sly)-module. The action To——1(xz) where we consider x as endomorphism of P(—2) is given by

the matriz (0 1). After twisting with p_1 we get a matriz <_ 1 > that corresponds to the

1
0 0 0 -1
s-action of x. In particular we get End(P(—2)) ~ End(To_,_1(P(—2))) ~ Clz]/(x?) and the first
isomorphism is induced by To_,_1. This is an easy case of Theorem

Proposition 3.15. The two actions of C[h]"V on N = T»_,, Res)(M) (one coming from the shifted
Clb]-action and one coming from the central inclusion C[h]" — U(g)) coincide.

By Proposition an equivalent formulation of this proposition is that the actions of C[p]"» C
C[p] and C[h]"W» C UWw coincide.

Proof. The proof is in several steps. Analogously to the proof of Theorem 4.7 in Chris’s notes we
may assume that A — p is dominant.
Step 1. The category Oy has enough projectives, the indecomposable ones are C[h] ®cipWa P(X)

for ' € W-\. Tt is enough to prove the statement for a projective M since any object in O, is covered
by a projective. We will consider the projectives of the form C[b] @cpwy pra(V @ A(X)) € O;.

For these objects M the proof is by a deformation argument — we reduce the proof to the case
when relevant infinitesimal blocks of O are semisimple by deforming the parameter A.

Step 2. Pick a very small positive number e and consider z € C with |z| < e. Consider
Az = A+ z(A+ p). For z # 0, we have W)_ = W, and different elements in W - A, are non-
comparable with respect to the standard order <. In particular, the infinitesimal block O, is
semisimple with |[W/W,| objects.

Step 3. Let us set a new notation pr,_(V) = @pr,_y,, (V) where the sum is taken over all v;

b

such that A +v; € W - A. In other words, pr)_ projects to infinitesimal blocks corresponding to the
central characters of \, + v (where v is a weight of V') that are close to the central character of A.
Now observe that pry_(V ® A(A;)) is a flat deformation of pry(V ® A(X)) (the Verma subquotients
that survive in pry_(V ® A(X.)) and in pry(V ® A(X)) are labeled by the same weights).

Step 4. Set p, = A, +p— A Let pr,, . = @pr), 4, (V) where v; are as in Step 3. Again, we note

Vi

that
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(3.1) PE,. (LA — 1)* ® Clb] @cms o (V @ AN.)))

is a flat deformation of

(82)  ThoulCll @cm pra(V @ AN = prolL — 1)* @ Cl] S pra(V @ AN,
This is for the same reason as in Step 3. It follows that it is enough prove the coincidence of the
two actions of C[h]"" on the deformed module [3.1| (for z # 0) (then we will be done by continuity).

Step 5. The point of this reduction is that pry_(V ® A();)) splits into the sum of Vermas
(=simples). Pick w € W. It is enough to prove the coincidence of the actions on

(3.3) B, (L — ) @ Clb] @y Alw - A2)).
As in Step 3, this object is C[b] ®c[pWa A(w - p;). So C[H]W € U(g) acts on 1) via p,. On the

other hand, C[h]""" C C[h] acts on C[] ®cppwa A(w - Az) via A; and hence it acts on 1) by p. as
well. O

From the construction we get that the following diagram is commutative.

~ T)\%y,

0\ —%0,

l Res) l Resu

T/\—>/L

O\ ——=0,
Extended translation functors are transitive in the following sense: Ty, = L_,,, o T)\_w.

Remark 3.16. We have a generalization of Example to the case when u is on the single wall
keray. We set Ay; = TyoA(w - ). Suppose that l(ws;) < l(w), so we have an exact sequence
0 — A(ws; -0) = Ayi — Alw - 0) — 0. Analogously to Example |3.14| the functor To_m gives
an isomorphism End(Ay, ;) ~ End(To_,(Aw)) where Tou(Ayi) = (C[f]] Rclpysi A(w - ), so the
endomorphsim algebra is Clz]/(z?). In particular, we have that the root oy € C[h]. acts nontrivially
on Ay;. This action kills the bottom Verma A(ws; - 0) and sends A(w - 0) to A(ws; - 0) by the
unique non-trivial homomorphism.

3.6. Properties of 7 and its adjoints. Let us write F for T0_>_p. This is a functor Oy — @_p ~
C-mod. As we have pointed out already, it admits a left adjoint F' (if A, B are finite dimensional
algebras, then any exact functor F : A-mod — B-mod has the form Hom4(P,e), where P is a
projective A-module with a homomorphism B — End 4(P)°PP, then the left adjoint is P @ g ). By
a dual argument, F also admits a right adjoint, F*.

Lemma 3.17. The following are true:
(1) F(L(w-0)) =0 if w # wy (the longest element) and is the unique simple C-module C, else.
(2) F(A(w-0)) =C for allw e W.
(3) FHC) = Pin.
(4) F*(C) = Ppin.

Proof. By the construction, frgoF =T, so (1) and (2) follow from the properties of T' from Chris’s
talk.

To prove (3) we note that T* = T' = F' o Res'. We have Res'(C) = C because C is projective
cover of C. Indeed, Hom¢ _oq(C, X) = Homyee (C, Res X). Therefore F'(C) = T*(C) = Prin by
Proposition

Let us prove (4). By

(

5) of Lemma [3.9, C is an injective C-module. Therefore C' is injective
envelope of C and Res*(C) =

(
C) = C. Analogously F*(C) = T*(C) = Ppin.- O
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From (4) we get a natural map ¢ : C' ~ Hom¢ _04(C, C') — Homo (Prin, Prin)-
Proposition 3.18. We have F*(C) = A(0) (and, similarly, F'(C) = V(0)).

Proof. The proof is in several steps.

Step 1. We can consider ay,...,qr € h* as elements of C. Let ¢; = ¢(a;) be the corresponding
endomorphism of P,,;,. We have an embedding C — C as the socle, i.e. the intersection of kernels
of all «; because they generate the maximal ideal of C. F* is left exact functor, so F*(C) is
the intersection of kernels of all ¢);. We need to show that this intersection coincides with A(0).
Note that A(0) is in the kernel of any 1;. Indeed, order the labels wi,...,wy in W so that
w; <= wj = 1 > j. Then we have a canonical standard filtration P, = P'> Pl D> PN ={0}
with P*~1/P? = A(w; -0). This filtration is preserved by every endomorphism (there are no Hom'’s
from lower to higher Vermas). In particular, all ¢;’s preserve the filtration. Since each of them is
nilpotent, they kill A(0).

Step 2. Note that P, is filtered with successive quotients Afm, for w € W/{1,s;}. This is
because Ppin = T*A(—p) = Ty0(T-p—, A(—p)), Aw’i = T, 0A(w - p). For reasons similar to
Step 1, each of the filtration terms is preserved by ;. We claim that on each of the direct summand
Aw,i of the associated graded of the filtration v; is nonzero.

Step 3. Let p be on the wall corresponding to the root «;. From the transitivity To_,_p =
Tys—pTo—su-  Therefore the map C' — End(P,) factors through C' — End(fﬁ L ,(C) —
End(Pn). Analogously to (4) of the previous lemma T;H,p((]) = CIb] ®cpp)ss Prmin,u- This
object is filtered by C[h] @cjp)s: A(w - p1). Note that the action of a; on the latter is induced from
the multiplication on a;. We have Ty, A, ; = C[h] ®clps A(w - p) (see Remark . The in-
duced homomorphism End(Aw7i) — End(Toﬁquyi) is an isomorphism. The endomorphism ﬂ of
T,_,_,(C) preserves the filtration by C[h]@cps A’s and is nonzero on each of the factors. Therefore
the endomorphism ¢; =17, , (¥) of Ppin is nonzero on each Ay, ;.

Step 4. Now we are ready to prove the claim of Step 1. Let K stand for the intersection of the
kernels of the 1;’s. Pick minimal j such that K ¢ PJ*! for a filtration P =P > P' 5 ... D Py =
{0} as in Step 1. We can assume that j is minimal for all such filtrations. That means that if i < j
then w; < w;. Suppose that w; # id. Then there is ¢ such that wj := wjs; < w;. Note that if
A(u - 0) occurs in P? then A(us; - 0) does. Indeed, otherwise w; < us;. As w;s; < w; that implies
w; < u and we get a contradiction. Therefore P is filtered by Au,i where w £ u and w £ us;
and Awﬂ is the top factor. Consider the projection of K on ij,l-. It has non-trivial projection to
the Verma quotient A(w - 0), so by Step 3 is not annihilated by ;. The contradiction finishes the
proof. O

3.7. Completion of the proof. First, we claim that F(P,;,) = C. By Proposition the
standard filtration of P, contains |WW| Vermas and by (2) of Lemma the image of each
Verma under F is one-dimensional. So dim F(Pppn) = |W| =dimC.

Now dim Home (F(Ppin), C) = dim Homo (P, F*C) = dim Homp (Ppyin, A(0)) = 1 by Corol-
lary Since C' is projective, the homomorphism C — C lifts to C' — F(Ppin). Since the
homomorphism F(P,,;,) — C is unique up to proportionality, we see that C' — F(Pp,) is an
epimorphism. Since the dimensions coincide, F(Pyin) = C.

Now consider the natural homomorphism P, — F* o F(Ppin) = Pmin. Applying F we get
a surjective homomorphism. Since F does not kill the head of Py, we conclude that Py, —
F* o F(Pmin) = Pnin. But any surjective endomorphism of P,,;, is an isomorphism.

Once Ppin — F* o F(Pmin), we see that Endo(Pin) — Ende(F(Ppin)) = Ende(C) = C.

As a conclusion we get that the Soergel functor V : Oy — mod- Endp(Ppin) is, in fact, the
extended translation functor 7 0——p : Op = C-mod.
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For the subsequent applications (to prove that V is fully faithful on the projective objects) let

us point out that we have seen above that the natural homomorphism P, — V* 0 V(P,,;y,) is an
isomorphism.
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