
LECTURE 4: SOERGEL’S THEOREM AND SOERGEL BIMODULES

DMYTRO MATVIEIEVSKYI

Abstract. These are notes for a talk given at the MIT-Northeastern Graduate Student Seminar
on category O and Soergel bimodules, Fall 2017.
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1. Goals and structure of the talk

The main goal of this talk is to introduce Soergel’s V-functor and study its properties. The
exposition will be as follows. In Section 2 we define Soergel’s V-functor and state three theorems of
Soergel. In Section 3 we will prove the first of them. For this purpose we will construct extended
translation functors that naturally extend translation functor to bigger categories.

2. Soergel V-functor

Let g be a semisimple Lie algebra, W its Weyl group and w0 ∈ W the longest element. By
Pmin := P (w0 · 0) we denote the projective cover of Lmin := L(w0 · 0).

Definition 2.1. The Soergel V-functor is a functor between the principal block O0 and the category
of right modules over End(Pmin) given by V(•) = Hom(Pmin, •).

We set C := C[h]/(C[h]W+ ) where C[h]W+ ⊂ C[h]W is the ideal of all elements without constant

term and (C[h]W+ ) = C[h]C[h]W+ . This is called the coinvariant algebra. The main goal of the talk
is to prove some properties of V.

Theorem 2.2. EndO(Pmin) ' C.

Theorem 2.3. V is fully faithful on projectives.

Theorem 2.4. V(Pi•) ' V(•) ⊗
C[h]si

C[h].

1
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3. Endomorphisms of Pmin

In this section we prove that EndO(Pmin) = C.
Before we proceed to the proof we need to observe some properties of O0, Pmin and C. This is

done in next three subsections.

3.1. O0 is a highest weight category. Recall that we have a Bruhat order on the Weyl group W .
For an element w ∈ W we say that w = (si1 , si2 , . . . , sik) is an expression of w if w = si1si2 . . . sik .
The minimal number l(w) of elements in the expression of w is called length of w. We say that the
expression w is reduced if l(w) = k.

Definition 3.1. Consider w1, w2 ∈W . We say w1 � w2 if there are reduced expressions w1 of w1

and w2 of w2 such that w1 is a subexpression of w2.

In this subsection we will prove that the principal block O0 is a highest weight category. Let us
recall the definition of a highest weight category from Daniil’s talk.

Definition 3.2. Consider an abelian category C which has a finite number of simple objects, enough
projectives and every object has finite length (equivalently C ' A -mod, where A is a finite dimen-
sional associative algebra). The highest weight structure on such a category, is a partial order �
on the set of simple objects Irr(C) and the set of standard objects ∆L, L ∈ Irr(C) such that:
• HomC(∆L,∆L′) 6= 0⇒ L � L′ and EndC(∆L) = C.
• The projective cover PL of L admits an epimorphism onto ∆L and Ker(PL → ∆L) admits a
filtration by ∆L′ with L ≺ L′.

Proposition 3.3. The category O0 is a highest weight category with respect to the opposite Bruhat
order.

Proof. Chris has proved that P (w ·0) is a direct summand in Pk . . .P1∆(0). Note that all standards
occurring in the bigger projective have labels w′ � w in the Bruhat order and w appears only once.
So K := Ker(P (w · 0)→ ∆(w · 0)) is filtered with ∆(w′ · 0) for w′ ≺ w.
It remains to show that Hom(∆(w · 0),∆(w′ · 0) 6= 0 ⇒ w′ � w. Note that in the opposite
direction it was proved in the first talk of the seminar. If Hom(∆(w · 0),∆(w′ · 0) 6= 0 then
the induced map on L(w · 0) is non-trivial, so [∆(w′ · 0) : L(w · 0)] 6= 0. By BGG reciprocity
[∆(w′ · 0) : L(w · 0)] = (P (w · 0) : ∆(w′ · 0)), so w′ � w. �

3.2. Properties of Pmin. For the longest element w0 ∈ W we have the corresponding minimal
element λmin := w0 · λ. For that element we have ∆min := ∆(λmin) ' Lmin := L(λmin) ' ∇min :=
∇(λmin). Let Pmin be a projective cover of ∆min. In his talk Chris defined translation functors
Tλ→µ. In this talk we will be especially interested in translations to the most singular case when
µ = −ρ. Let us set a notation Oλ for Oχλ . Note that every object in O−ρ is a direct sum of some
copies of ∆(−ρ) = L(−ρ), so O−ρ is equivalent to the category of vector spaces. We set T := Tλ→−ρ
and T ∗ := T−ρ→λ. These functors are exact and biadjoint. We want to find a description of the
projective cover Pmin using translations functors.

Proposition 3.4. Pmin = T ∗(∆(−ρ)).

Proof. ∆(−ρ) is projective object in O−ρ and the functor T ∗ is left adjoint to the exact functor
T . Therefore T ∗(∆(−ρ)) is projective. It is enough to show that dim Hom(T ∗(∆(−ρ)), L) = 1 if
L = Lmin and 0 else.

Let us compute Hom(T ∗(∆(−ρ)), L). Since T ∗ is left adjoint to T we have Hom(T ∗(∆(−ρ)), L) '
Hom(∆(−ρ), T (L)). From Chris’s talk we know that T (Lmin) ' ∆(−ρ) and T (L) = 0 for any other
simple L that finishes the proof. �
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Remark 3.5. ∆(−ρ) is self-dual object in the category O−ρ and T ∗ commutes with duality. Anal-
ogous to Proposition 3.4 statement shows that Pmin = T ∗(∆(−ρ)) is the injective envelope of ∆min.
In fact, there are no other projective-injective elements in Oλ.

Corollary 3.6. V(∆(w · 0)) is a one-dimensional End(Pmin)-module for any w ∈W .

We will show later that such module is unique.

Proof. V(∆(w·0)) = HomO0(T ∗∆(−ρ),∆(w·0)) = HomO−ρ(∆(−ρ), T∆(w·0)). Chris has proved in
his talk that T∆(w·0) = ∆(−ρ). Therefore dimV(∆(w·0)) = dim HomO−ρ(∆(−ρ),∆(−ρ)) = 1. �

Recall from Daniil’s talk the definition of a standard filtration.

Definition 3.7. An object M ∈ O is standardly filtered if there is a chain of submodules 0 =
F0M ⊂ F1M ⊂ F2M ⊂ . . . ⊂ FnM = M such that each Fi+1M

/
FiM is isomorphic to a Verma

module.

Proposition 3.8. Every Verma module ∆(w · 0) appears in a standard filtration of Pmin exactly
one time.

Proof. By BGG reciprocity we have
(Pmin : ∆(w · 0)) = [∆(w · 0) : Lmin] = [∆(w · 0) : ∆min] = 1 where the last equality was proved in
the proof of Proposition 5 from the first lecture. �

3.3. Properties of C.

Lemma 3.9. The following are true.

(1) C is a local commutative algebra, in particular, it has a unique irreducible representation
(we will just write C for that irreducible representation).

(2) C ∼= H∗(G/B,C).
(3) There is a nonzero element ω ∈ C such that for any other element f1 ∈ C, there is f2 ∈ C

with f1f2 = ω.
(4) The socle (=the maximal semisimple submodule) of the regular C-module C is simple, equiv-

alently, by (a), dim Hom(C, C) = 1.
(5) We have an isomorphism C ∼= C∗ of C-modules. In particular, C is an injective C-module.

Proof. (1) is clear. To prove (2), let us recall that H∗(G/B,C) is generated by H2(G/B,C) ∼= h∗

(in particular, there’s no odd cohomology and the algebra H∗(G/B,C) is honestly commutative).
So we have an epimorphism C[h]� H∗(G/B,C). The classical fact is that the kernel is generated

by C[h]W+ so C
∼−→ H∗(G/B,C).

Let us prove (3). We claim that this holds for the cohomology of any compact orientable manifold
M . Indeed, dimHtop(M,C) = 1, let us write ω for the generator. The pairing (α, β) :=

∫
M α ∧ β

is nondegenerate on H∗(M,C). (3) follows.
By (3) any nonzero C-submodule of C contains ω. This implies (4).

Let us prove (5). Consider the linear isomorphism C
∼−→ C∗ given by (·, ·). Note that the form

(·, ·) is invariant: (γα, β) = (α, γβ). So the map C → C∗ is C-linear. �

3.4. Strategy of proof. Our strategy of proving EndO(Pmin) = C is as follows.

1) We define a functor (an extended translation functor) T̃0→−ρ : O0 → C -mod with the property

that frg ◦ T̃0→−ρ = T0→−ρ, where T0→−ρ : O0 → O−ρ is the usual translation functor, and frg :
C -mod→ Vect is the forgetful functor (recall from the beginning of Subsection 3.2 that O−ρ is the
semisimple category with a single simple object, so it is the category Vect of vector spaces).

2) Since F := T̃0→−ρ is an exact functor between categories that are equivalent to the categories
of modules over finite dimensional algebras, it admits left and right adjoint functors to be denoted
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by F !,F∗. We will show that Pmin = F !(C) = F∗(C). Therefore we have a natural map C =
EndC -mod(C,C)→ EndO(F∗(C),F∗(C)) = EndO(Pmin).

3) We will establish an isomorphism C
∼−→ End(Pmin) by showing that F(Pmin) = C. A key

ingredient for the latter is to show that F∗(C) = ∆(0).

3.5. Extended translation functors. The functor F = T̃0→−ρ is a special case of more general
functors known as the extended translation functors.

Consider the dotted action of W on h. We set Ũ := U(g) ⊗C[h]W C[h] with the action of C[h]W

on U(g) by the Harish-Chandra isomorphism. Let Jλ be the maximal ideal corresponding to λ in

C[h] and I|λ| the maximal ideal corresponding to W · λ in C[h]W = C[h/W ]. We define Ũ -modλ
as the category of finitely generated Ũ -modules M such that JnλM = 0 for n big enough. Let

Õλ be a subcategory of Ũ -modλ consisting of Ũ -modules M such that M ∈ Oλ considered as a
U(g)-module. The goal of this subsection is to construct and study an extended translation functor

T̃λ→µ : Õλ → Õµ.

Let Wλ ⊂ W be a stabilizer of λ. We consider the algebra of Wλ-invariants ŨWλ := U(g) ⊗C[h]W

C[h]Wλ and JWλ
λ := Jλ ∩C[h]Wλ . Let ŨWλ -modλ be a category of finitely generated ŨWλ-modules

M such that (JWλ
λ )nM = 0 for n big enough. We set Õλ

Wλ
be a subcategory of ŨWλ -modλ

consisting of ŨWλ-modules M such that M ∈ Oλ considered as a U(g)-module. We have natural

restriction functors Resλ : Õλ → Oλ and ResWλ
λ : ÕWλ

λ → Oλ.

Proposition 3.10. The functor ResWλ
λ is an equivalence of categories.

Proof. The natural map h → h/W factors through h → h/Wλ → h/W . The map h/Wλ → h/W
is unramified, so the formal neigbourhood of a point W · λ ∈ h/W is canonically isomorphic to a

formal neighborhood of a pointWλ·λ ∈ h/Wλ. In other words, lim←−C[h]W /In|λ| ' lim←−C[h]Wλ/(JWλ
λ )n.

Hence on any M ∈ Oλ we have an action of lim←−C[h]Wλ/(JWλ
λ )n that makes M an object of ÕWλ

λ .

That gives a functor quasi-inverse to ResWλ
λ . �

Remark 3.11. The functor Resλ(•) has a natural left adjoint Ind
C[h]
C[h]Wλ (•) and a natural right

adjoint HomC[h]Wλ (C[h], •).

Corollary 3.12. For λ+ ρ regular the functor Resλ gives an equivalence of categories Õλ and Oλ.

Lemma 3.13. For the most singular case we have Õ−ρ ' C -mod.

Proof. Every object M ∈ O−ρ is of form M ' ∆(−ρ) ⊗ V . Therefore the action of the central

subalgebra Z(U(g)) = C[h]W on M factors through C[h]W → C[h]W /C[h]W+ = C and Õ−ρ consists

of U−ρ ⊗ C-modules from the category O−ρ. Therefore we have the functor C -mod → Õ−ρ given

by ∆(−ρ)⊗• and the functor Õ−ρ → C -mod given by HomU−ρ(∆(−ρ), •). It is easy to check that
these two functors are quasi-inverse. �

Therefore we have a translation functor Tλ→µ : ÕWλ
λ → ÕWµ

µ . For integral λ, µ such that λ+ρ and

µ+ρ are dominant and Wλ ⊂Wµ we want to extend it to the translation functor T̃λ→µ : Õλ → Õµ.

We claim that for M ∈ Õλ we have a natural structure of a Ũ -module from the category Õµ on

N := Tλ→µ Res(M) constructed in the following way. We already have an action of Ũ
Wµ
µ . Let ρµ−λ

be an endomorphism of C[h] induced by the map ρµ−λ(x) = x + µ − λ for x ∈ h. For M ∈ Õλ
we have a natural action of C[h] by Ũ -module endomorphisms on Res(M) that factors through
C[h]/Jnλ for n large enough. By the functoriality we have an action of C[h] on N = Tλ→µ Res(M).
We twist this action with ρµ−λ, so it factors through C[h]/Jnµ . Let us denote this action as z ∗m.
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Example 3.14. Let g = sl2. Let x be the generator of C[h]. We are interested in the action of

C[h] on P (−2) and induced action on T̃0→−1(P (−2)). Let us choose a basis of P (−2), for which
the weight diagram is as below.

v0

v−2 w−2

v−4 w−4

. . . . . .

The Casimir element x2 + 2x ∈ C[h]W acts on each vi by 0 and sends w−2k to 2v−2k. Then x acts

by moving the diagram to the left, i.e. x(vk) = 0 and x(wk) = vk. T̃0→−1(P (−2)) ' ∆(−1)2 as
U(sl2)-module. The action T0→−1(x) where we consider x as endomorphism of P (−2) is given by

the matrix

(
0 1
0 0

)
. After twisting with ρ−1 we get a matrix

(
−1 1
0 −1

)
that corresponds to the

∗-action of x. In particular we get End(P (−2)) ' End(T̃0→−1(P (−2))) ' C[x]/(x2) and the first

isomorphism is induced by T̃0→−1. This is an easy case of Theorem 2.2.

Proposition 3.15. The two actions of C[h]W on N = Tλ→µ Resλ(M) (one coming from the shifted

C[h]-action and one coming from the central inclusion C[h]W ↪→ U(g)) coincide.

By Proposition 3.10, an equivalent formulation of this proposition is that the actions of C[h]Wµ ⊂
C[h] and C[h]Wµ ⊂ ŨWµ coincide.

Proof. The proof is in several steps. Analogously to the proof of Theorem 4.7 in Chris’s notes we
may assume that λ− µ is dominant.

Step 1. The category Õλ has enough projectives, the indecomposable ones are C[h]⊗C[h]Wλ P (λ′)

for λ′ ∈W ·λ. It is enough to prove the statement for a projectiveM since any object in Õλ is covered
by a projective. We will consider the projectives of the form C[h]⊗C[h]Wλ prλ(V ⊗∆(λ)) ∈ Õλ.

For these objects M the proof is by a deformation argument – we reduce the proof to the case
when relevant infinitesimal blocks of O are semisimple by deforming the parameter λ.

Step 2. Pick a very small positive number ε and consider z ∈ C with |z| < ε. Consider
λz := λ + z(λ + ρ). For z 6= 0, we have Wλz = Wλ and different elements in W · λz are non-
comparable with respect to the standard order 6. In particular, the infinitesimal block Oλz is
semisimple with |W/Wλ| objects.

Step 3. Let us set a new notation prλz(V ) =
⊕
νi

prλz+νi(V ) where the sum is taken over all νi

such that λ+ νi ∈W · λ. In other words, prλz projects to infinitesimal blocks corresponding to the
central characters of λz + ν (where ν is a weight of V ) that are close to the central character of λ.
Now observe that prλz(V ⊗∆(λz)) is a flat deformation of prλ(V ⊗∆(λ)) (the Verma subquotients
that survive in prλz(V ⊗∆(λz)) and in prλ(V ⊗∆(λ)) are labeled by the same weights).

Step 4. Set µz = λz +µ−λ. Let prµz =
⊕
νi

prλz+νi(V ) where νi are as in Step 3. Again, we note

that
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(3.1) prµz(L(λ− µ)∗ ⊗ C[h]⊗C[h]Wλ prλz(V ⊗∆(λz)))

is a flat deformation of

(3.2) Tλ→µ[C[h]⊗C[h]Wλ prλ(V ⊗∆(λ))] = prµ[L(λ− µ)∗ ⊗ C[h]⊗C[h]Wλ prλ(V ⊗∆(λ))].

This is for the same reason as in Step 3. It follows that it is enough prove the coincidence of the
two actions of C[h]W on the deformed module 3.1 (for z 6= 0) (then we will be done by continuity).

Step 5. The point of this reduction is that prλz(V ⊗ ∆(λz)) splits into the sum of Vermas
(=simples). Pick w ∈W . It is enough to prove the coincidence of the actions on

(3.3) prµz(L(λ− µ)∗ ⊗ C[h]⊗C[h]Wλ ∆(w · λz)).

As in Step 3, this object is C[h]⊗C[h]Wλ ∆(w · µz). So C[h]W ⊂ U(g) acts on (3.3) via µz. On the

other hand, C[h]W ⊂ C[h] acts on C[h]⊗C[h]Wλ ∆(w · λz) via λz and hence it acts on (3.3) by µz as

well. �

From the construction we get that the following diagram is commutative.

Õλ

Resλ
��

T̃λ→µ // Õµ
Resµ

��
Oλ

Tλ→µ // Oµ

.

Extended translation functors are transitive in the following sense: T̃λ→ν = T̃µ→ν ◦ T̃λ→µ.

Remark 3.16. We have a generalization of Example 3.14 to the case when µ is on the single wall
kerα∨i . We set ∆̃w,i = Tµ→0∆(w · µ). Suppose that l(wsi) < l(w), so we have an exact sequence

0 → ∆(wsi · 0) → ∆̃w,i → ∆(w · 0) → 0. Analogously to Example 3.14 the functor T̃0→µ gives

an isomorphism End(∆̃w,i) ' End(T̃0→µ(∆̃w,i)) where T̃0→µ(∆̃w,i) = C[h] ⊗C[h]si ∆(w · µ), so the

endomorphsim algebra is C[x]/(x2). In particular, we have that the root αi ∈ C[h]+ acts nontrivially

on ∆̃w,i. This action kills the bottom Verma ∆(wsi · 0) and sends ∆(w · 0) to ∆(wsi · 0) by the
unique non-trivial homomorphism.

3.6. Properties of F and its adjoints. Let us write F for T̃0→−ρ. This is a functor O0 → Õ−ρ '
C -mod. As we have pointed out already, it admits a left adjoint F ! (if A,B are finite dimensional
algebras, then any exact functor F : A -mod → B -mod has the form HomA(P, •), where P is a
projective A-module with a homomorphism B → EndA(P )opp, then the left adjoint is P ⊗B •). By
a dual argument, F also admits a right adjoint, F∗.

Lemma 3.17. The following are true:

(1) F(L(w · 0)) = 0 if w 6= w0 (the longest element) and is the unique simple C-module C, else.
(2) F(∆(w · 0)) = C for all w ∈W .
(3) F !(C) = Pmin.
(4) F∗(C) = Pmin.

Proof. By the construction, frg ◦F = T , so (1) and (2) follow from the properties of T from Chris’s
talk.

To prove (3) we note that T ∗ = T ! = F ! ◦ Res!. We have Res!(C) = C because C is projective
cover of C. Indeed, HomC -mod(C,X) = HomVect(C,ResX). Therefore F !(C) = T ∗(C) = Pmin by
Proposition 3.4.

Let us prove (4). By (5) of Lemma 3.9, C is an injective C-module. Therefore C is injective
envelope of C and Res∗(C) = C. Analogously F∗(C) = T ∗(C) = Pmin. �
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From (4) we get a natural map φ : C ' HomC -mod(C,C)→ HomO(Pmin, Pmin).

Proposition 3.18. We have F∗(C) = ∆(0) (and, similarly, F !(C) = ∇(0)).

Proof. The proof is in several steps.
Step 1. We can consider α1, . . . , αk ∈ h∗ as elements of C. Let ψi = φ(αi) be the corresponding

endomorphism of Pmin. We have an embedding C→ C as the socle, i.e. the intersection of kernels
of all αi because they generate the maximal ideal of C. F∗ is left exact functor, so F∗(C) is
the intersection of kernels of all ψi. We need to show that this intersection coincides with ∆(0).
Note that ∆(0) is in the kernel of any ψi. Indeed, order the labels w1, . . . , wN in W so that
wi � wj ⇒ i ≥ j. Then we have a canonical standard filtration Pmin = P 0 ⊃ P 1 . . . ⊃ PN = {0}
with P i−1/P i = ∆(wi · 0). This filtration is preserved by every endomorphism (there are no Hom’s
from lower to higher Vermas). In particular, all ψi’s preserve the filtration. Since each of them is
nilpotent, they kill ∆(0).

Step 2. Note that Pmin is filtered with successive quotients ∆̃w,i, for w ∈ W/{1, si}. This is

because Pmin = T ∗∆(−ρ) = Tµ→0(T−ρ→µ∆(−ρ)), ∆̃w,i = Tµ→0∆(w · µ). For reasons similar to
Step 1, each of the filtration terms is preserved by ψi. We claim that on each of the direct summand
∆̃w,i of the associated graded of the filtration ψi is nonzero.

Step 3. Let µ be on the wall corresponding to the root αi. From the transitivity T̃0→−ρ =

T̃µ→−ρT̃0→µ. Therefore the map C → End(Pmin) factors through C → End(T̃ ∗µ→−ρ(C)) →
End(Pmin). Analogously to (4) of the previous lemma T̃ ∗µ→−ρ(C) = C[h] ⊗C[h]si Pmin,µ. This
object is filtered by C[h]⊗C[h]si ∆(w · µ). Note that the action of αi on the latter is induced from

the multiplication on αi. We have T̃0→µ∆̃w,i = C[h] ⊗C[h]si ∆(w · µ) (see Remark 3.16). The in-

duced homomorphism End(∆̃w,i) → End(T̃0→µ∆̃w,i) is an isomorphism. The endomorphism ψ
i

of

T ∗µ→−ρ(C) preserves the filtration by C[h]⊗C[h]s ∆’s and is nonzero on each of the factors. Therefore

the endomorphism ψi = T ∗0→µ(ψi) of Pmin is nonzero on each ∆̃w,i.
Step 4. Now we are ready to prove the claim of Step 1. Let K stand for the intersection of the

kernels of the ψi’s. Pick minimal j such that K 6⊂ P j+1 for a filtration P = P 0 ⊃ P 1 ⊃ . . . ⊃ PN =
{0} as in Step 1. We can assume that j is minimal for all such filtrations. That means that if i < j
then wj ≺ wi. Suppose that wj 6= id. Then there is i such that wj′ := wjsi ≺ wj . Note that if
∆(u · 0) occurs in P j then ∆(usi · 0) does. Indeed, otherwise wj ≺ usi. As wjsj ≺ wj that implies

wj ≺ u and we get a contradiction. Therefore P j is filtered by ∆̃u,i where w 6≺ u and w 6≺ usi
and ∆̃wj ,i is the top factor. Consider the projection of K on ∆̃wj ,i. It has non-trivial projection to
the Verma quotient ∆(w · 0), so by Step 3 is not annihilated by ψi. The contradiction finishes the
proof. �

3.7. Completion of the proof. First, we claim that F(Pmin) = C. By Proposition 3.8, the
standard filtration of Pmin contains |W | Vermas and by (2) of Lemma 3.17, the image of each
Verma under F is one-dimensional. So dimF(Pmin) = |W | = dimC.

Now dim HomC(F(Pmin),C) = dim HomO(Pmin,F∗C) = dim HomO(Pmin,∆(0)) = 1 by Corol-
lary 3.6. Since C is projective, the homomorphism C → C lifts to C → F(Pmin). Since the
homomorphism F(Pmin) → C is unique up to proportionality, we see that C → F(Pmin) is an
epimorphism. Since the dimensions coincide, F(Pmin) = C.

Now consider the natural homomorphism Pmin → F∗ ◦ F(Pmin) = Pmin. Applying F we get
a surjective homomorphism. Since F does not kill the head of Pmin, we conclude that Pmin �
F∗ ◦ F(Pmin) = Pmin. But any surjective endomorphism of Pmin is an isomorphism.

Once Pmin
∼−→ F∗ ◦ F(Pmin), we see that EndO(Pmin)

∼−→ EndC(F(Pmin)) = EndC(C) = C.
As a conclusion we get that the Soergel functor V : O0 → mod- EndO(Pmin) is, in fact, the

extended translation functor T̃0→−ρ : O0 → C -mod.
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For the subsequent applications (to prove that V is fully faithful on the projective objects) let
us point out that we have seen above that the natural homomorphism Pmin → V∗ ◦ V(Pmin) is an
isomorphism.
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