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1. Goals and structure of the talk

The main goal of the talk is to introduce the elliptic Hall algebra (EHA) and show that it is
isomorphic to a quotient of the Ding-Iohara algebra (also known as the quantum toroidal gl1). We
will start with the notion of quantum affinization for Kac-Moody algebras. After that we will define
the elliptic Hall algebra EK and its specialization E that will be one of the main objects of study

in our seminar. The first one can be understood as the quantum affinization of Uq(ĝl1)). Next we

will move to the Ding-Iohara algebra Ũ and its quotient Ẽ that is the quantum toroidal gl1. We
will define it by generators and relations and construct a surjective map Ẽ � E . The main result
of this talk is that this map is an isomorphism. We will give a combinatorial proof of this theorem.
Interaction with other objects such as the Hall algebra of coherent sheaves on an elliptic curve and
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2 DMYTRO MATVIEIEVSKYI

shuffle algebra will be discussed in other talks. We finish these notes with a discussion of Hopf
algebra structure on the EHA.

2. Quantum affinization

2.1. Quantum Kac-Moody algebra. Let g be a Kac-Moody algebra. We set C be the Cartan
matrix of g, h – its coroot lattice. Let α1, . . . , αn ∈ h∗ and α∨1 , . . . , α

∨
n ∈ h be sets of simple roots and

simple coroots correspondingly. For this data we define the quantum Kac-Moody algebra Uq(g).

Definition 2.1.1. The quantum Kac-Moody algebra Uq(g) is the C-algebra generated by elements
kh for every h ∈ h and x±1 , x

±
2 , . . . , x

±
n with the following set of relations.

kh+h′ = khkh′ , k0 = 1,

khx
±
i = q±αi(h)x±i kh,

[x+
i , x

−
j ] = δi,j

kα∨i − k−α∨i
q − q−1

,∑
r=0,1,...,1−Ci,j

(−1)r

[r!][(1− Ci,j − r)!]
(
x±i
)1−Ci,j−r x±j

(
x±i
)r

= 0, for i 6= j.

In the formulas above we put [m] = qm−q−m

q−q−1 and [m]! = [m][m− 1] . . . [1].

2.1.1. Quantum Kac-Moody algebra of sl2. Let us show an example and apply the construction
above to the Lie algebra sl2. We have elements x+

1 = e, x−1 = f and km for m ∈ Z. Note that
km = km1 . Then Uq(sl2) is generated by K := k1, K−1, e and f with the following set of relations.

KK−1 = K−1K = 1,

Ke = q2eK,

Kf = q−2fK,

[e, f ] =
K −K−1

q − q−1
.

2.2. Quantum affinization. Let g, h, αi and α∨i be the same as in the previous section. Let us
have variables x±i,r (with i ∈ {1, . . . , n}, r ∈ Z), hi,m (with i ∈ {1, . . . , n}, m ∈ Z \ {0}). We put

φ±i,m be the elements determined by the formal power series

∑
m≥0

φ±i,±mz
±m = kα∨i exp

±(q − q−1)
∑
m′≥1

hi,±m′z
±m′

 ,

φ+
i,m = 0, for m < 0,

φ−i,m = 0, for m > 0.

Let us consider the following series:

x±i (w) =
∑
r∈Z

x±i,rw
r,

φ±i (z) =
∑

m∈Z>0

h±i,mz
m,

δ(
z

w
) =

∑
k∈Z

(
z

w
)k.
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Definition 2.2.1. The quantum affinization of Uq(g) is the C-algebra Uq(ĝ) with the generators
x±i,r, kh (with h ∈ h), hi,m and the relations below.

(i)kh+h′ = khkh′ , k0 = 1, khφ
±
i (z) = φ±i (z)kh,

(ii)φ±i (w)φ±j (z) = φ±j (z)φ±i (w), φ+
i (w)φ−j (z) = φ−j (z)φ+

i (w),

(iii)khx
±
i (z) = q±αi(h)x±i (z)kh,

(iv)φ±i (z)x±j (w) =
q±Ci,jw − z
w − q±Ci,jz

x±j (w)φ±i (z),

(v)[x+
i (z), x−k (w)] =

δi,j
q − q−1

δ(
w

z
)
(
φ+
i (w)− φ−i (w)

)
,

(vi)(w − q±Ci,jz)x±i (z)x±j (w) = (q±Ci,jw − z)x±j (w)x±i (z),

(vii)
∑
σ∈Σs

∑
k=0,...,s

(−1)k
[s]!

[k]![s− k]!
x±i (wσ(1)) . . . x

±
i (wσ(k))x

±
i (z)x±i (wσ(k+1)) . . . x

±
i (wσ(s)) = 0,

where s = 1− Ci,j. The equation (iv) is expanded for |w| > |z|.

Remark 2.2.2. The correspondence x±i → x±i,0 gives a map of algebras Uq(g)→ Uq(ĝ). Therefore

Uq(ĝ) has a structure of Uq(g)-module.

Proof. The proof of this statement is straightforward computation of the coefficients in relations
above. We left it to the reader. �

2.2.1. Quantum affine algebra U(ŝl2). Let us apply this construction to the Lie algebra sl2. We
have generators er = x+

1,r, fr = x−1,r for r ∈ Z, hm = h1,m for m 6= 0, K and K−1. Let us define

power series e(w), f(w), φ±(z) as in the general case. We have the following set of relations:

KK−1 = K−1K = 1,

Kφ±(z) = φ±(z)K,

Ke = q2eK,

Kf = q−2fK,

φ±(z)e(w) =
q2w − z
w − q2z

e(w)φ±(z),

φ±(z)f(w) =
q−2w − z
w − q−2z

f(w)φ±(z),

[e(z), f(w)] =
δi,j

q − q−1
δ(
w

z
)(φ+(w)− φ−(w)).

2.3. The quantum Heisenberg algebra.

Definition 2.3.1. The infinite-dimensional Heisenberg algebra H is the C-algebra generated by
elements a±n for n ∈ Z>0 and a central element γ with relations [an, am] = δn,−mnγ.

Let us fix complex numbers q1, q2 and q = q1q2 and set

αk =
(1− qk1 )(1− qk2 )(1− q−k)

n
.

We consider the algebra Uq(ĝl1) generated over C(q1, q2) by elements a±n for n ∈ Z>0 and a central

element c with relations [an, am] = δn,−m
cn−c−n

αn
.

The algebra Uq(ĝl1) is called the quantum Heisenberg algebra.
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2.4. The elliptic Hall algebra. The main goal of this section is to construct an algebra EK that,

in a sense, is the quantum affinization of Uq(ĝl1) (note that ĝl1 is not a Kac-Moody Lie algebra so
the construction of the previous section does not apply literally but serves as motivation).
We set Z = Z2 and Z× = Z2 \ (0, 0). For an element x = (a, b) ∈ Z× let us put deg(x) :=
g.c.d.(a, b) ∈ Z>0. For a pair of elements (x, y) ∈ (Z2)× we set εx,y = sign(det(x, y)) ∈ {±1} and
let ∆x,y be the triangle in Z with vertices (0, 0), x, x+ y.

Definition 2.4.1. The elliptic Hall algebra EK is the C algebra generated by the set of elements
ux for x ∈ Z× and κα for α ∈ Z subject to the relations given below. We define elements θz for
z ∈ Z× satisfying the following equations for every x0 ∈ Z× with deg(x0) = 1:∑

i

θix0s
i = exp(

∑
r≥1

αrurx0s
r).

Note that θx0 = α1ux0, θ2x0 = α2u2x0 + α1
2 u

2
x0.

The generating relations of EK are as follows.

κα is central,

κακβ = κα+β, κ0 = 1,

[ux, uy] = δx,−y
κx − κ−1

x

αdeg(x)
with deg((r, d)) := gcd(r, d) if x, y belong to the same line,

[uy, ux] = εx,yκα(x,y)
θx+y

α1
if deg(x) = 1 and ∆x,y has no interior lattice point.

In the expression above

α(x, y) = εx
(εxx+ εyy − εx+y(x+ y))

2
, if εx,y = 1,

α(x, y) = εy
(εxx+ εyy − εx+y(x+ y))

2
, if εx,y = −1.

Here εx = 1 for x = (r, d) if r > 0 or r = 0 and d > 0 and εx = −1 in other case.

For any line L through the origin with a rational slope elements ux for x ∈ L satisfy relations of

the quantum Heisenberg algebra Uq(ĝl1). Therefore E can be understood as the quantum affinization
of the quantum Heisenberg algebra.
Note that all κz are defined from κ0,1 and κ1,0. In this talk we will be interested in specialization
E of this algebra to the case κ0,1 = 1, κ1,0 = c.

Corollary 2.4.2. The algebra E (we will also call it the EHA) is the C(c±1) algebra generated by
the set of elements ux for x ∈ Z× subject to the following relations:

(i)[ux, ux′ ] = 0 if x, x′ belong to the same line and x 6= −x′,

(i′)[ux, ux′ ] =
cr − c−r

q − q−1
if x = (r, d), x′ = (−r,−d),

(ii)[uy, ux] = εx,y
θx+y

α1
if deg(x) = 1, εx = εy and ∆x,y has no interior lattice point,

(ii′)[uy, ux] = εx,y
cα(r,r′)

α1
θx+y if deg(x) = 1, x = (r, d), y = (r′, d′), εx 6= εy and ∆x,y has no interior lattice point.
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Let us give few examples of commutation relations:

[u(1,0), u(0,1)] =
θ(1,1)

α1
= u(1,1),

[u(1,0), u(1,2)] =
θ(2,2)

α1
=
α2

α1
u(2,2) +

α1

2
u(1,1),

[u(−1,0), u(1,2)] = −κ1,0

α1
θ(2,2) = −α2c

α1
u(2,2) −

α1c

2
u(1,1),

[u(1,2), u(1,−1)] is not proportional to u(2,1). This commutator will be computed later.

3. Properties of EHA

3.1. SL(2,Z)-action. We have a natural action of SL(2,Z) on the generators ux of the algebra
E . An element γ ∈ SL(2,Z) sends ux to uγ(x). If c 6= 1 this action does not preserve α(x, y) and

therefore does not descend to E . In fact we have an action of the universal cover ŜL(2,Z) on E .
Nevertheless it sends θx to θγ(x), εx,y to εγ(x),γ(y), preserves degrees and triangles w/o interior lattice
points. Suppose that x, y satisfy condition of the commutation relation (iii). Note that assuming
c = 1 we have the action of SL(2,Z) on E . Therefore if x, γ(x), y and γ(y) lie the right half-plane
(so α(x, y) = 0), then the commutation relation is preserved by the action of γ. We will use it in
Section 3.4.

3.2. Smaller set of generators. For any element x = (a, b) ∈ Z× we define its rank as rank(x) :=
a.

Lemma 3.2.1. The EHA EK (ansd therefore its specialization E) is generated by the elements
u±1,l, u0,±k for l ∈ Z, k ∈ Z>0.

Proof. We will prove this lemma by the induction on the rank of an element.

Figure 1. The
induction step.

Denote by T the subalgebra generated by u±1,l, u0,±k and assume
that ur,s ∈ T for any (r, s) ∈ Z× with n > |r| ≥ 1. It is enough to
prove that un,d ∈ T , the fact for the u−n,d will follow analogously.
Let us denote z = (n, d) and define x = (r, s) be the closest point
to the line 0z such that r < n. By the construction ∆x,z−x has
no interior points (they need to be closer to the line 0z then
x) and εx = εz−x = εz = 1. Therefore θz = 1

α1
[tx, tz−x] and

ranks of x and z − x are less then n. Therefore θz ∈ T . Let
z = kz0 where deg(z0) = 1. From the definition θz = αkuz +∑
i1+...+im=k

βi1,...,imui1z0 . . . uimz0 where βi1,...,im =

m∏
j=1

αij

m! . Every

summand except for αkuz belongs to T , so uz ∈ T .

�

3.3. Basis combinatorial notions. In the next section we will give a basis of the EHA E as a
vector space. For this purpose we need to introduce more notations.
For an element z ∈ Z× we define its slope µ(z) to be the angle between the horizontal axis and the
ray 0z. We set µ(z) ∈]− π

2 ,
3π
2 ].
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Figure 2. The triangle ∆
and a local convexification
p′ of the non-convex path
p.

For the every sequence s = (x1, x2, . . . , xn) of elements
in Z× we associate a broken line in Z connecting points
0, x1, x1 + x2, . . . , x1 + . . .+ xn. We call two sequences
s and s

′
equivalent if s

′
can be obtained from s by suc-

cessive permutations of adjacent vertices xi 6= −xi+1

of the same slope. We will refer to equivalence classes
of sequences as paths and denote the set of all paths
as Path. To a path p = (x1, x2, . . . , xn) we assign the
element up = ux1ux2 . . . uxn ∈ E . From the definition
of E we see that the elements up generate EHA as a
vector space.
We say that the path p represented by a sequence
(x1, x2, . . . , xn) is convex if it satisfies

− π

2
< µ(x1) ≤ µ(x2) ≤ . . . ≤ µ(xn) ≤ 3π

2
.

We denote the set of all convex paths as Conv. For
example the path p in Figure 2 is not convex because
µ(xi) > µ(x2) but the path p′ is convex. In next section
we will prove that up for p ∈ Conv is a basis of E .
For the pair xi, xi+1 in a path p such that µ(xi) > µ(xi+1) we can construct the triangle ∆ with
vertices x1 + . . . + xi−1, x1 + . . . + xi−1 + xi+1, x1 + . . . + xi−1 + xi + xi+1. We call the path p′

obtained from p by replacing xi, xi+1 by a convex path in the triangle ∆i a local convexification of
p.

Figure 3. The area a(p)
of the path p.

For the path p = (x1, x2, . . . , xn) we define its length
l(p) = n and weight |p| =

∑n
i=1 xi. Note that for

every path p there is a unique convex path p] with
the same entries that in p. This path is constructed
by permuting entries according to the order given by
slope. Note that any two segments of paths p and p]

either do not intersect or coincide. Let us consider the
subalgebra E+ of E generated by u(a,b) with a > 0 or
a = 0, b > 0. It is generated by paths with entries
xi = (ai, bi), ai > 0 or ai = 0, bi > 0 for all i. We call
them positive paths. Let us denote Conv+ the set of
positive convex paths. We can define the subalgebra
E− and the subset Conv− in the same way. Then any
positive p and the corresponding positive convex path
p] bound a polygon with all vertices in lattice. Let
a(p) to be the area of this polygon, we will abuse the
terminology and call a(p) the area of the path p. We
have the following lemma.

Lemma 3.3.1. Let p be a positive path in Z×. Then
i) p is convex if and only if a(p) = 0,
ii) for any subpath p′ of p we have a(p′) ≤ a(p),
iii) For any local convexification p′ of p we have a(p′) < a(p).

i) is obvious.
To prove ii) let us consider the path p∗ obtained from p by replacing p′ by p′]. Note that p∗,] = p]

because p∗ is obtained by permuting entries. Therefore a(p) = a(p′) + a(p∗)⇒ a(p′) ≤ a(p).
So it remains to prove the third statement of the lemma.
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Figure 4. The lower green path p′] lies between upper green p′ and red p′′].

Let p′ be a local convexification of p obtained by replacing entries xi, xi+1 by a convex path. We
claim that p′] belongs to the polygon bounded by p] and p′. The upper bound is obvious. Suppose
that we have points inside the triangle ∆ for p′. Let y ∈ p′ be the first such vertex and let p′′ be a
broken line defined in the following way. We take the edge from y and extend it in the direction
of y to the intersection y′ with the edge of ∆. We replace y by y′ in the path p′. The broken line
p′′ doesn’t have to be a path but we still can define notions of slope, convex broken line and area

in the same way. We claim that p′] belongs to the polygon Ay bounded by p′ and p′′]. Indeed let

us look Figure 4. Here blue color corresponds to the path p and corresponding convex path p],
green color – to p′ and p′] and red – to p′′ and p′′]. Note that we are interested only in z with
µ(xi+1) ≤ µ(z) ≤ µ(xi). Let us introduce some notations. We denote the incoming in y segment
of p′ by a1 and the outgoing segment by a2. Therefore for the first edges in p′] and p′′] we have
that the slope of the second one is bigger. Therefore up to the segment a1 we have p′] belongs to
Ay. Let us denote by ~v the vector between y′ and y. Note that we have this vector (black color on

the picture) between corresponding vertices of p′] and p′′] after the segment a1 in p′]. After that
we have the same segments in both of broken lines up to the segment a2. And we have p′] and p′′]

coincide after a2. Therefore p′] belongs to Ay.
So it is enough to prove the claim for the convexification p′ without interior lattice points. The
same argument applied to p′ gives that it is enough to prove for the case when a point on a side of
∆ should be the intersection of it’s sides, i.e. the vertex. In this case we get p′] = p].
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Let us denote by B the polygon bounded by p and p′. Therefore

a(p) ≥ a(p′) + S(B) ≥ a(p′) + s(∆)⇒ a(p′) < a(p).

3.4. Basis of convex paths. The main goal of this section is to prove an important lemma that
up for p ∈ Conv+ give a basis of E+ as a vector space. In future talks we will show from another
description of the EHA that elements corresponded to convex paths are linearly independent. For
now we refer reader for the proof to the paper [BS] of Burban and Shiffmann. So it remains to
check that these elements span everything. For these purposes we need to recall a standard fact
about area of the polygon with lattice points.

Proposition 3.4.1. (Pick’s formula.) For the polygon with lattice points P with i(P ) interior
lattice points and b(P ) lattice points on the boundary we have the following formula

S(P ) = i(P ) +
b(P )

2
− 1

The most important step to prove that convex paths span the whole EHA is to check that every
non-convex path of length 2 is generated by convex paths. Let us show that the statement for an
arbitrary path p will follow.

Lemma 3.4.2. Suppose that [ux, uy] ∈
⊕

q∈Conv+
Cuq for any x, y such that |det(x, y)| < d. Then

for any positive path p satisfying a(p) < d we have up ∈
⊕

q∈Conv+
Cuq

Proof. For a(p) = 0, Lemma 3.3.1 i) states that p is convex, so proposition holds. If a(p) > 0 then
p is not convex, so we have µ(x1) ≤ µ(x2) ≤ . . . ≤ µ(xs) > µ(xs+1) for some s. The statement ii) of
Lemma 3.3.1 gives us that det(xs, xs+1) = a((xs, xs+1)) ≤ a(p) < d, so by the lemma assumption
uxsuxs+1 =

∑
i βiuqi where qi is a local convexification of p. Therefore it is enough to prove that

uqi ∈
⊕

q∈Conv+
Cuq for every i. By Lemma 3.3.1 iii) we have a(qi) < a(p). Note that the area

function a(•) takes values of the form n
2 for n ∈ Z≥0 and a(q) < a(p) < d for every convexification

q. Applying the same procedure to qi finitely many times we will get a linear combination of convex
paths. The lemma follows. �

Ir remains to show that [ux, uy] ∈
⊕

q∈Conv+
Cuq for any two segments x, y ∈ Z×.

Proposition 3.4.3. For any elements x, y ∈ Z× with µ(x) > µ(y) we have uxuy ∈
⊕

p∈Ix,y
Cup where

Ix,y – the set of convex paths inside the triangle ∆x,y.

Proof. We will prove this lemma by the induction on det(y, x). If det(y, x) = 1 then by Pick’s
formula for S(∆x,y) = 1

2 we have i(∆x,y) = b(∆x,y) = 0, so deg(x) = deg(x+ y) = 1 and ∆x,y has
no interior lattice points. It follows that uxuy = uyux + [ux, uy] = uyux + κα(x,y)ux+y.
Let us assume that the statement of the lemma holds for any x′, y′ with det(x′, y′) < d (if
det(y′, x′) < 0 then the path (x′, y′) is convex) and set det(y, x) = d. Let us first consider the
case when ∆x,y has no interior lattice points.

Lemma 3.4.4. If ∆x,y has no interior lattice points then uxuy ∈
⊕

p∈Ix,y
Cup.
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Proof. We put y0 = y
deg(y) , x0 = x

deg(x) and (x+ y)0 = x+y
deg(x+y) .

Figure 5. The
interior lattice
point z for case
1).

1) Assume deg(x) ≥ 2, deg(y) ≥ 2
Let us consider the point z = (deg(x) − 1)x0 + y0 ∈ ∆x,y. The
only case when z is not an interior point is deg(x) = deg(y) =
2. We can find such γ ∈ SL(2,Z) that x = γ((0, 2)) and y =
γ((2, 0)). As both points x and y are positive action of γ preserves
commutation relations. Direct computation shows

u(2,0) =
α1

α2
[u(1,1), u(1,−1)]−

α2
1

2
u2

(1,0) ⇒

[u(0,2), u(2,0)] =
α1

α2
[u(0,2), [u(1,1), u(1,−1)]]−

α2
1

2
[u(0,2), u

2
(1,0)]

It is enough to check that each summand can be decomposed
into a linear combination of monomials corresponding to convex
paths. Indeed

[u(0,2), [u(1,1), u(1,−1)]] =

[u(1,1), [u(0,2), u(1,−1)]] + [u(1,−1), [u(1,1), u(0,2)]] =

− [u(1,1), u(1,1)] + [u(1,−1), u(1,3)] = [u(1,−1), u(1,3)] =
1

α1
θ(2,2)

[u(0,2), u
2
(1,0)] = [u(0,2), u(1,0)]u(1,0) + u(1,0)[u(0,2), u(1,0)] = −u(1,2)u(1,0) − u(1,0)u(1,2) =

− [u(1,2), u(1,0)] + 2u(1,0)u(1,2 = − 1

α1
θ(2,2) + 2u(1,0)u(1,2) ∈ Cu(2,2) ⊕ Cu(1,1) ⊕ Cu(1,0)u(1,2).

Therefore uxuy = uyux + γ([u(0,2), u(2,0)]) ∈
⊕

q∈Conv+
Cuq.

2) Suppose deg(x) = 1 or deg(y) = 1. Then

uxuy = uyux +
κα(x,y)θx+y

α1
=

uyux + κα(x,y)

∑
i1+...+im=deg(x+y)

βi1,...,imui1(x+y)0 . . . uim(x+y)0 ∈
⊕

q∈Conv+
Cuq.

�
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Therefore we may assume that there are interior points in ∆x,y.

Figure 6. The
case of interior
lattice point z ∈
∆x,y.

Let z ∈ ∆x,y be a point such that the triangle 0xz has no interior
points and deg(z) = deg(x − z) = 1. Suppose that x − z is
positive. The case when x− z is negative is similar, we will have
same expressions but with coefficients depending on κ. We have

[uz, ux−z] =
θ(x)

α1
=
αdeg(x)

α1
ux + f,

where f is generated by elements ukx0 for f < deg(x). We get

[ux, uy] =
α1

αdeg(x)
[[uz, ux−z], uy]− [f, uy] =

α1

αdeg(x)
[[uy, ux−z], uz]−

α1

αdeg(x)
[[uy, uz], ux−z]− [f, uy].

We see that the triangles 0zy and xyz lie inside the triangle 0xy.
Therefore we have det(y, z) = 2S(0zy) < 2S(0xy) = det(y, x) and
analogously det(y, x−z) < det(y, x). By the induction hypothesis
we have [uy, uz] ∈

⊕
p∈Iz,y

Cup and [uy, uz−x] ∈
⊕

q∈Iz−x,y

Cuq.

From the construction µ(x − z) < µ(z) < µ(y), so (x − z, p) is a
convex path for all p ∈ Iz,y. Therefore the path (p, x − z) is a local convexification of the path
(x, y, x− z). By Lemma 3.3.1 iii) we have

a((p, x− z)) < a((z, y, x− z)) < a(x, y) = det(y, x) = d. So [ux−z, up] ∈
⊕
t∈Ix,y

Cut.

Analogously [uq, ux] ∈
⊕

s∈Ix,y
Cus. Therefore it is enough to prove that [f, uy] ∈

⊕
s∈Ix,y

Cus. Note that

f is a finite sum of paths ui1x0ui2x0 . . . uimx0 with some coefficients, where i1 + . . . + im = deg(x).
We need to show that [ui1x0ui2x0 . . . uimx0 , uy] ∈

⊕
s∈Ix,y

Cus. Let us state a stronger fact:

Lemma 3.4.5. Let p = (i1x0, i2x0, . . . , imx0) be a positive path with i1 + . . . + im ≤ deg(x) and
ij < deg(x) for all j and q be a convex path between (i1 + . . .+ im)x0 and y. Then upuq ∈

⊕
s∈Ix,y

Cus.

Proof. We prove the proposition by induction on m. If m = 1 let us denote x′ = i1x0. Then q is a
local convexification of the path (x′, y−x′), so a((p, q)) < a((x′, y−x′)) < a((x, y)) = det(x, y) = d,
so the statement follows from Proposition 3.4.3. Here the first inequality is given by Lemma 3.3.1
iii) and the second one follows from the fact that the triangle 0x′y is contained in 0xy.
Suppose that the proposition holds for all paths p with k < m segments. We have

[up, uq] = [ui1x0ui2x0 . . . uimx0 , uq] = [ui1x0ui2x0 . . . uim−1x0 , uq]uimx0 + ui1x0 . . . uim−1x0 [uimx0 , uq]

By the induction hypothesis the first summand of the right hand side is a linear combination of
the elements utuimx0 where t is a convex path with all slopes between µ(y) and µ(x). Therefore
(t, imx0) ∈ Ix,y.
The second summand by the proposition for m = 1 is a linear combination of the elements
ui1x0ui2x0 . . . uim−1x0us where s is a convex path with all slopes between µ(y) and µ(x). By the
induction hypothesis it can be rewritten as a linear combination of ur for r ∈ Ix,y. Therefore
[up, uq] ∈

⊕
r∈Ix,y

Cur, q.e.d. �
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Applying Lemma 3.4.5 above to q = (y) and all summands in f we get [f, x] ∈
⊕

s∈Ix,y
Cus.

Therefore the sum [ux, uy] = α1
αdeg(x)

[[uy, ux−z], uz]− α1
αdeg(x)

[[uy, uz], ux−z]− [f, uy] ∈
⊕

q∈Ix,y
Cuq, q.e.d.

�

Proposition 3.4.6. The algebra E+ is isomorphic to
⊕

Cup
p∈Conv+

as a vector space.

Proof. We have already said that elements up are linearly independent for convex paths p. Let
us consider a non-convex path q = (x1, x2, . . . , xn) and let µ(x1) ≤ . . . µ(xs) > µ(xs+1). Then by
Proposition 3.4.3 uq =

∑
i βiuqi where qi is a local convexification of q. By Lemma 3.3.1 we have

a(qi) < a(q). We can apply the same procedure to qi. The area function takes only half-integer
non-negative values, so in a finite number of steps we get uq ∈ Cup

p∈Conv+
. �

Example 3.4.7. Let us show the decomposition of [u(1,2), u(1,−1)] into a linear combination of
elements corresponding to convex paths.

u(1,−1) =
1

κ0,−1
[u(0,−1), u(1,0)] = [u(0,−1), u(1,0)],

[u(1,2), u(1,−1)] = [u(1,2), [u(0,−1), u(1,0)]] = [u(0,−1), [u(1,2), u(1,0)]] + [u(1,0), [u(0,−1), u(1,2)]] =

[u(0,−1),
θ(2,2)

α1
] + [u(0,1), u(1,1)] = u(2,1) −

α1

2
[u(0,−1), u

2
(1,1)]−

α2

α1
[u(0,−1), u(2,2)] =

α1 − α2

α1
u2,1 +

α1

2
(u(1,1)u(1,0) + u(1,0)u(1,1)) =

=
α1 − α2

α1
u(2,1) + α1u(1,0)u(1,1) +

α1

2
[u(1,1), u(1,0)] =

α1 − 2α2

2α1
u2,1 + α1u(1,0)u(1,1).

3.5. Triangular decomposition of the EHA. Let us denote by E>, E< and E0 subalgebras
generated by u1,l, u−1,l and u0,±k respectively. Note that E> 6' E+ cause we have not elements
u0,m in E>. We have the following important corollary of Proposition 3.4.6.

Proposition 3.5.1. The EHA E has a triangular decomposition E> ⊗ E0 ⊗ E< ' E where the
isomorphism is given by the multiplication map.

Proof. First, we need to check that the multiplication map m : E>⊗E0⊗E< → E is surjective. We
have the following set of relations

(i)[u(1,l), u(0,m)] = u(1,l+m) ∈ E>, [u(1,l), u(0,−m)] = −κ0,−mu(1,l+m) = −u(1,l+m) ∈ E>,
(ii)[u(−1,l), u(0,m)] = −κ0,mu(−1,l+m) = −u(−1,l+m) ∈ E<, [u(−1,l), u(0,−m)] = u(−1,l−m) ∈ E<,

(iii)[u(1,l), u(−1,m)] = ±
θ(0,l+m)

α1
∈ E0 if l 6= −m,

(iv)[u(1,l), u(−1,−l)] =
κ1,l − κ−1,−l

α1
=
c− c−1

α1
,

(v)[u(0,±l), u(0,±m)] = 0.

Therefore in the element up for p = (x1, . . . , xn) we can move all xi ∈ E+ to the beginning using re-
lations (i), (iii) and (iv) and get a linear combination of elements upi for paths pi = (qi, y1, . . . , yk)
where uqi ∈ E> and all yi ∈ E< or yi ∈ E0. In the same way using relations (ii) we can move
all xi ∈ E< to the end and get a linear combination of the elements usi fo si = (qi, ti, ri) where
uqi ∈ E>, uti ∈ E0 and uri ∈ E<. But all such usi belong to the image of m. Therefore m is
surjective.
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By Proposition 3.4.6 convex paths form a basis in both E> and E< (the proof is analogous). The
basis of E0 is given by all paths with all segments of form (0, l). We denote the corresponding sets
of convex paths Conv>, Conv0 and Conv<. Therefore it is enough to prove that m(uvi ⊗ utj ⊗ uwk

)

are linearly independent in E for all elements vi ∈ Conv>, tj ∈ Conv0 and wk ∈ Conv<. Let us
consider two cases.

1) tj is a path consisting of entries (0, n) for n ∈ Z>0. Note that for any elements u(r,d) with
r > 0, u(0,n) with n > 0 and u(r′,d′) with r′ < 0 we have µ((r, d)) < µ((0, n)) < µ((r′, d′)). Therefore
m(uvi⊗utj ⊗uwk

) are convex paths that are linearly independent by analogous to Proposition 3.4.6
result for E .

2) Suppose that tj has an entry (0,−n). Using relations (v) we can set tj = ((0, a1), (0, a2), . . . , (0, ak)
with a1 < a2 < . . . < ak. Let us denote the subalgebra generated by u(0,n) (resp. u(0,−n)) as E0,+

(resp, E0,−). We set ut+j
=
∏
ai>0 u(0,ai) ∈ E0,+ and ut−j

=
∏
ai<0 u(0,ai) ∈ E0,−. Let us show that

the multiplication map m′ : E< ⊗ E0,− → E is injective.
We call a path p = (x1, x2, . . . , xr) concave if (xr, . . . , x2, x1) is convex. Analogously to Proposition
3.4.6 we can show that elements corresponding to concave paths form a basis in E and E<. Then
if we choose the concave basis up in E< and a basis uq in E0,− then m′(up ⊗ uq) will be elements
corresponding to different concave paths and therefore m′ is injective.
Let

∑
q uq be the decomposition of an element m(uvi ⊗ ut−j ) into a linear combination of convex

paths. Let p′ be a local convexification of a path p that replaces entries xi, xi+1 by y1, . . . , yk.
Proposition 3.4.3 implies that µ(xi) > µ(yj) > µ(xi+1) for all j. Therefore m(uvi ⊗ utj ⊗ uwk

) =∑
qm(uq⊗ut+j ⊗uwk

) – linear combination of convex paths. Let Convtj ,wk
be a set of convex paths

p that have form p = (x1, x2, . . . , xl, tj , wk) with µ(xi) >
π
2 , ∀i. (We allow l to be 0.) Note that

Conv =
⊔
tj ,wk

Convtj ,wk
. Injectivity of m′ implies that all m′(uvi ⊗ ut−j

) ae linearly independent.

Therefore m(m′(uvi ⊗ut−j )⊗ut+j ⊗uwk
) = m(uvi ⊗utj ⊗uwk

) ∈ Convtj ,wk
are linearly independent.

It follows that m is injective. �

4. Ding-Iohara algebra

4.1. Generators and relations. We give explicit generators and relations for the Ding-Iohara
algebra U . Let us fix complex numbers q1, q2 and q = q1q2. Recall that αk = (1−qk1 )(1−qk2 )(1−q−k).
We set

χ(z, w) = (z − q1w)(z − q2w)(z − q−1w),

δ(
z

w
) =

∑
k∈Z

(
z

w
)k.

We will define an algebra Ũ by generators ek, fk, h
±
n where k ∈ Z and n ∈ Z>0 and relations to

be specified below.
Let us define generating series

e(z) :=
∑
k∈Z

ekz
−k,

f(z) :=
∑
k∈Z

fkz
−k,

ψ±(z) = 1 +
∑
n∈Z>0

h±n z
±n.
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Let ε, ε1 and ε2 be elements of {1,−1}. The defining relations of Ũ are as follows.

(i) ψε1(z)ψε2(w) = ψε2(w)ψε1(z),

(ii) χ(z, w)ψε1(z)e(w) = −χ(w, z)e(w)ψε1(z),

(iii) χ(z, w)e(z)e(w) = −χ(w, z)e(w)e(z),

(iv) χ(w, z)f(z)f(w) = −χ(z, w)f(w)f(z),

(v) [f(z), e(w)] =
1

α1

(
δ(
z

w
)(cψ−(z)− c−1ψ+(z)

)
.

We are interested in its quotient Ẽ by cubic relations. We put Res
zyw

(a) be the coefficient of (zyw)−1

in a. Cubic relations are as follows.

Res
zyw

[
(zyw)m(z + w)(y2 − zw)e(z)e(y)e(w)

]
= 0 for all m ∈ Z,

Res
zyw

[
(zyw)m(z + w)(y2 − zw)f(z)f(y)f(w)

]
= 0 for all m ∈ Z.

The algebra Ẽ is called the quantum toroidal gl1.
It will be useful to rewrite last two relations. We denote the coefficient of zl11 z

l2
2 z

l3
3 in a as C

z
l1
1 z

l2
2 z

l3
3

(a).

Res
zyw

[
(zyw)−m(z + w)(y2 − zw)e(z)e(y)e(w)

]
= C

(zyw)m−1

[
(z + w)(y2 − zw)e(z)e(y)e(w)

]
=

C
zmym+1wm−1

[e(z)e(y)e(w)]− C
zm+1ym−1wm

[e(z)e(y)e(w)] + C
zm−1ym+1wm

[e(z)e(y)e(w)]−

C
zmym−1wm+1

[e(z)e(y)e(w)] = emem+1em−1 − em+1em−1em + em−1em+1em − emem−1em+1 =

em[em+1, em−1]− [em+1, em−1]em = [em, [em+1, em−1]]

Analogously we have

Res
zyw

[
(zyw)−m(z + w)(y2 − zw)f(z)f(y)f(w)

]
= [fm, [fm+1, fm−1]].

So last two relations state that

[em, [em+1, em−1]] = 0,

[fm, [fm+1, fm−1]] = 0.

5. The isomorphism between E and Ẽ.

5.1. The map φ : Ẽ → E. In this subsection we construct a surjective map φ : Ẽ → E . We know
that the algebra Ẽ is generated by elements ek, fk and h±n . Let us put φ(ek) = u(1,k), φ(fk) = u(−1,k)

and φ(h±n ) = θ(0,±n). We need to check that φ respects sets of relations for Ẽ and E , i.e. elements

ux for x ∈ {(1, k), (−1, k), (0, n)} satisfy relations of Ẽ .
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Let us consider formal series

T1(z) =
∑
l∈Z

u1,lz
l,

T−1(z) =
∑
l∈Z

u−1,lz
l,

T1
0(z) = 1 +

∑
n∈Z>0

θ0,nz
n,

T−1
0 (z) = 1 +

∑
n∈Z>0

θ0,−nz
−n,

δ(z) =
∑
l∈Z

zl.

To show that a map of algebras φ is well-defined it is enough to check the following set of relations

(i) Tε10 (z)Tε20 (w) = Tε20 (w)Tε10 (z)

(ii) χ(z, w)Tε20 (z)Tε1(w) = −χ(w, z)Tε1(w)Tε20 (z),

(iii) χ(z, w)Tε(z)Tε(w) = −χ(w, z)Tε(w)Tε(z),

(iv) [T−1(z),T1(w)] =
1

α1
δ(
z

w
)(cT−0 (z)− c−1T+

0 (z)),

(v) [u(1,m), [u(1,m+1), u(1,m−1)]] = 0,

(vi) [u(−1,m), [u(−1,m+1), u(−1,m−1)]] = 0.

Proposition 5.1.1. The map φ : Ẽ → E is a well-defined surjective map of algebras.

Proof. From the relations of the EHA E we have u(0,l)u(0,m) = u(0,m)u(0,l) and therefore E0 is a

commutative subalgebra. By the definition Tε0 ∈ E0. The relation (i) follows.
We will prove (ii) for ε1 = ε2 = {+}. All other cases are analogous. We need to rewrite this

condition. We put ζ(x) = (1−q1x)(1−q2x)
(1−x)(1−qx) .

Lemma 5.1.2. ζ(x) = exp
(∑

n
xn(1−qn1 )(1−qn2 )

n

)
.

Proof. Let us consider log(ζ(x)). Note that log(1− z) = −
∑

n
zn

n .

log(ζ(x)) = log(1− q1x) + log(1− q2x)− log(1− x)− log(1− q2x) =

−
∑
n

qn1
xn

n
−
∑
n

qn2
xn

n
+
∑
n

xn

n
+
∑
n

qn
xn

n
=
∑
n

(1− qn1 )(1− qn2 )

n
xn.

Taking exponent of both sides we get the proposition. �

Note that

χ(z, w)

χ(w, z)
=

(z − q1w)(z − q2w)(z − q−1w)

(w − q1z)(w − q2z)(w − q−1z)
=
z2(1− q1

w
z )(1− q2

w
z )(z − q−1w)

w2(1− q1
z
w )(1− q2

z
w )(w − q−1z)

=

z2

w2

(1− q1
w
z )(1− q2

w
z )

q−1z(qwz − 1)

q−1w(q zw − 1)

(1− q1
z
w )(1− q2

z
w )

=
w

z

(1− q1
w
z )(1− q2

w
z )

(1− qwz )(z − w)

(1− q zw )(z − w)

(1− q1
z
w )(1− q2

z
w )

=

(1− q1
w
z )(1− q2

w
z )

(1− qwz )(1− w
z )

(1− q zw )( zw − 1)

(1− q1
z
w )(1− q2

z
w )

= −ζ(w\z)
ζ(z\w)

.
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The relation (ii) can be rewritten as

T+
0 (z)T1(w)ζ(

z

w
) = T1(w)T+

0 (z)ζ(
w

z
).

This relation should be understood as an equality of coefficients for these formal series expanded
in |w| > |z|. Let us look at

ζ(
w

z
) =

(1− q1
w
z )(1− q2

w
z )

(1− w
z )(1− qwz )

=
( zw − q1)( zw − q2)

( zw − 1)( zw − q)
=

(q−1
1

z
w − 1)(q−1

2
z
w − 1)

( zw − 1)(q−1 z
w − 1)

=
(1− q−1

1
z
w )(1− q−1

2
z
w )

(1− z
w )(1− q−1 z

w )
=

exp

(∑
n

(1− q−n1 )(1− q−n2 )

n

( z
w

)n)
Then we have the relation (ii) in the following form

T+
0 (z)T1(w) exp

(∑
n

zn(1− qn1 )(1− qn2 )

nwn

)
= T1(w)T+

0 (z) exp

(∑
n

zn(1− q−n1 )(1− q−n2 )

nwn

)
,

T1(w)T+
0 (z) = T+

0 (z)T1(w) exp

(∑
n

(
(1− qn1 )(1− qn2 )

n
− (1− q−n1 )(1− q−n2 )

n

)( z
w

)n)
.

Note that T+
0 (z) = exp

(∑
n αnu(0,n)z

n
)
.

T1(w) exp

(∑
n

αnu(0,n)z
n

)
=

exp

(∑
n

αnu(0,n)z
n

)
T1(w) exp

(∑
n

(
(1− qn1 )(1− qn2 )

n
− (1− q−n1 )(1− q−n2 )

n

)( z
w

)n)
.

Lemma 5.1.3. Suppose that [e, p] = ec⇒ e exp(p) = exp(p)e exp(c).

Proof. We need to show that ep
k

k! =
∑

a+b=k
pa

a! e
cb

b! . We will prove it by the induction by k.
For k = 1 we have e = pe+ ec.
Suppose that the statement holds for k − 1. Then

e
pk

k!
=

1

k
epk−1p =

1

k

∑
a+b=k−1

pa

a!
e
cb

b!
p =

1

k

∑
a+b=k−1

pa

a!
ep
cb

b!
=

1

k

∑
a+b=k−1

pa+1

a!
e
cb

b!
+

1

k

∑
a+b=k−1

pa

a!
e
cb+1

b!
=

1

k

∑
a+b=k

(
pa

(a− 1)!
e
cb

b!
+
pa

a!
e

cb

(b− 1)!

)
=

1

k

∑
a+b=k

(a+ b)
pa

a!
e
cb

b!
=
∑
a+b=k

pa

a!
e
cb

b!
.

�

Let us compute [T1(w),
∑

n αnu(0,n)z
n].

[T1(w),
∑
n

αnu(0,n)z
n] =

∑
k∈Z

∑
n∈Z>0

αn[u(1,k−n), u(0,n)]w
k−nzn =

∑
k∈Z

∑
n∈Z>0

αnu(1,k)w
k
( z
w

)n
= T1(w)

∑
n∈Z>0

αn

( z
w

)n
= T1(w)

∑
n∈Z>0

(1− qn1 )(1− qn2 )(1− q−n)

n

( z
w

)n
=

T1(w)
∑
n∈Z>0

(1− qn1 )(1− qn2 )− (1− q−n1 )(1− q−n2 )

n

( z
w

)n
.
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Applying Lemma 5.1.3 we have the proof of (ii).
The only known proof of (iii) uses the isomorphism E with the EHA of elliptic curve and GLn
modular forms. The first fact will be covered in future talks. The second one will lead us too far
away from our topic. One can read details in Kapranov’s paper [K].
To prove (iv) let us consider the coefficient of zkwl in expressions of both sides.

C
zkwl

([T−1(z),T1(w)]) = [u(−1,k), u(1,l)],

C
zkwl

(
1

α1
δ(
z

w
)(c−1T−0 (z)− cT+

0 (z))

)
=

1

α1
C
zk+l

(
c−1T−0 (z)− cT+

0 (z)
)
.

We need to consider three cases.

1) k + l < 0,

[u(−1,k), u(1,l)] = κα((−1,k),(1,l)

θ(0,l+k)

α1
,

α((−1, k), (1, l) = (
(1,−k) + (1, l)− (0,−k − l)

2
) = (1, l)⇒ [u(−1,k), u(1,l)] = c

θ(0,l+k)

α1
,

1

α1
C
zk+l

(
cT−0 (z)− c−1T+

0 (z)
)

=
1

α1
C
zk+l

(cT−0 (z)) = c
θ(0,l+k)

α1
.

2) k + l = 0,

[u(−1,k), u(1,l)] = [u(−1,−l), u(1,l)] =
c− c−1

α1
,

1

α1
C
zk+l

(cT−0 (z)− c−1T+
0 (z)) =

c− c−1

α1
.

3) k + l > 0,

[u(−1,k), u(1,l)] = −κα((−1,k),(1,l)

θ(0,l+k)

α1
,

α((−1, k), (1, l) = −(
(1,−k) + (1, l)− (0, k + l)

2
) = (−1, k)⇒ [u(−1,k), u(1,l)] = −c−1 θ(0,l+k)

α1
,

1

α1
C
zk+l

(
cT−0 (z)− c−1T+

0 (z)
)

= − 1

α1
C
zk+l

(c−1T+
0 (z)) = −c−1 θ(0,l+k)

α1
.

We see that in all cases

C
zkwl

([T−1(z),T1(w)]) = C
zkwl

(
1

α1
δ(
z

w
)(cT−0 (z)− c−1T+

0 (z))

)
for all k, l⇒

[T−1(z),T1(w)] =
1

α1
δ(
z

w
)(cT−0 (z)− c−1T+

0 (z)).

To prove (v) we note that the triangle (0, (1, l + 1), (2, 2l)) has no interior lattice points. Then
[[u(1,l+1), u(1,l−1)], u(1,l)] = [u(2,2l), u(1,l)] = 0.
The proof of (vi) is analogous.
Lemma 3.2.1 implies surjectivity of φ. �

We are ready to state the main theorem of this talk.
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Theorem 5.1.4. The map φ gives an isomorphism between Ẽ and the EHA E.

5.2. Properties of Ẽ. The main goal of this subsection is to get the similar result to Lemma 3.5.1
for the algebra Ẽ . Let us introduce subalgebras Ẽ> generated by elements el, Ẽ0 generated by
elements h±n and Ẽ< generated by elements fl. We have the following triangular decomposition.

Proposition 5.2.1. The multiplication map m̃ : Ẽ> ⊗ Ẽ0 ⊗ Ẽ< → Ẽ is surjective.

Proof. It is enough to establish that

1)[ek, fl] ∈ Ẽ0,

2)[ek, h±n] ∈ Ẽ> +m′(Ẽ> ⊗ Ẽ0), where m′ : Ẽ> ⊗ Ẽ0 → Ẽ is the multipliction map.

3)[fk, h±n] ∈ Ẽ< +m′′(Ẽ0 ⊗ Ẽ<), where m′′ : Ẽ0 ⊗ Ẽ< → Ẽ is the multipliction map..

Then the lemma will follow from the same reason as in Lemma 3.5.1. We will prove these facts
using the relations of Ẽ .
The relation (iv) implies that [e(z), f(w)] ∈ Ẽ0(z, w) Note that coefficient of zkwl is exactly [ek, fl]
that proves 1).
Let us prove 2) for hn. The h−n case is analogous.

Lemma 5.2.2. We have [el, hn] = βel+n+
∑

i eihi for some ei, hi. Analogously [el, h−n] = β′el−n+∑
i eihi.

Proof. First, let us compute the coefficients of zkwl in the relation (ii) of Ẽ .

hk−3el − (q1 + q2 + q−1)hk−2el−1 + (q−1
1 + q−1

2 + q)hk−1el−2 − hkel−3 =

elek−3 − (q−1
1 + q−1

2 + q)el−1ek−2 + (q1 + q2 + q−1)el−2ek−1 − el−3ek.

We can rewrite it as

[hk−3, el] + (q−1
1 + q−2

2 + q − q1 − q2 − q−1)el−1hk−2 + (q−1
1 + q−1

2 + q)[el−1, hk−2]−
(q−1

1 + q−2
2 + q − q1 − q2 − q−1)el−2hk−1 − (q−1

1 + q−1
2 + q)[el−2, hk−1]− [hk, el−3] = 0,

q−1
1 + q−2

2 + q − q1 − q2 − q−1 = (1− q1)(1− q2)(1− q−1) = α1, so

[hk−3, el] + α1el−1hk−2 + (q−1
1 + q−1

2 + q)[el−1, hk−2]−
α1el−2hk−1 − (q−1

1 + q−1
2 + q)[el−2, hk−1]− [hk, el−3] = 0,

Note that in the formula above we suppose h−1 = h−2 = . . . = 0 and h0 = 1 because we compute
commutator with ψ+(z).
Now we are ready to prove this proposition. We use induction by n. For n = 1 we have from the
relation above

[el−3, h1] = α1el−2h0 = α1el−2.

Suppose thaw we prove the proposition for all n < l. From the computation above [ek, hl] is a linear
combination of [ek+1, hl−1], [ek+2, hl−2], [ek+3, hl−3], [ek+1hl−1] and [ek+2hl−2]. The proposition
follows. �

3) is analogous to 2). �

Now we have the following commutative diagram

Ẽ> ⊗ Ẽ0 ⊗ Ẽ<

m̃
��

φ̂ // E> ⊗ E0 ⊗ E<

m

��
Ẽ

φ // E
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From Lemma 3.5.1 the map m is isomorphism. Proposition 5.2.1 states that m̃ is surjective.
Proposition 5.1.1 shows that φ is surjective. Therefore Theorem 5.1.4 is equivalent to the fact that
φ̂ is an isomorphism.

Remark 5.2.3. Theorem 5.1.4 implies that m̃ is an isomorphism.

We will denote φ̂ also by φ. It is enough to check that every part φ>, φ0 and φ< is an isomorphism.
For commutative subalgebras E0 and Ẽ0 the isomorphism is obvious. Cases of > and < are analogous,
so we will focus on the first of them. We need to introduce more combinatorical notions.

5.3. Minimal paths. We are going to introduce the notion of a minimal path.

Figure 7. Two different min-
imal paths.

For a point z ∈ Z× we have a line L going through
(0, 0) and z. We want to choose a closest parallel
to L line L′ 6= L that has lattice points. We have
two identical options. We set L′ be a line lying
above L. By a minimal path we denote the path
(x, z − x) with x ∈ L′. We need two important
lemmas about minimal paths.

Lemma 5.3.1. Let z = (r, d) be a positive seg-
ment with r ≥ 2. Then there exists a mini-
mal path (x, z − x) such that rank(x) > 0 and
rank(z − x) > 0. In fact there are gcd(r, d) such
paths.

Proof. Let S be a strip bounded by the vertical
lines through origin and z and lines L and L′. Then
to prove the lemma it is enough to find a lattice
point on L′ inside S.
If deg(z) > 1 the statement is obvious. So it is
enough to consider deg(z) = 1. The only case when we don’t have a point on the line L′ inside S is
when both intersection points of vertical lines through (0, 0) and z with L′ are lattice points. We
know that r ≥ 2 and deg(z) = 1, so we have a point (1, dr ) ∈ L such that d

r 6∈ Z. Then consider

a line L′′ parallel to L through (1, ddr e). It is closer to L then L′, so (x, z − x) was not a minimal
path and we get a contradiction. �

Lemma 5.3.2. A positive path (x, z − x) is minimal if and only if deg(x) = deg(z − x) = 1 and
the triangle ∆x,z−x has no interior lattice points.

Proof. All points inside the triangle ∆x,z−x or on the sides x and z − x are closer to the line L
then L′ containing x. Therefore if the path p = (x, z− x) is minimal then there are no such lattice
points.
Suppose that we have a not-minimal path p = (x, z − x) satisfying conditions of lemma. Let us
choose a minimal path p = (y, z−y). Note that S(∆x,z−x) > S(∆y,z−y) because they have common
side z but a point y is closer to L then x. On the other hand by Pick’s formula S(∆x,z−x) = deg(z) =
S(∆y,z−y). We get a contradiction. �

Note that for a positive minimal path (x, z − x) we have [ux, uz−x] = θz
α1

.

5.4. The proof of the main theorem. In this subsection we will prove Theorem 5.1.4. We have
a map φ : Ẽ> → E>. Note that for every r we have a vector space E>r generated by the paths up
with rank(p) = r. We are going to construct for each p ∈ E>r a preimage ep = φ−1(up) satisfying

commutation relations of E and show that such ep (for all r) generate Ẽ as vector space. We prove
it by the induction on r.
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For r = 1 we have e1,m = em = φ−1(u(1,m)) by the definition of φ.
Now suppose that we define such preimages for all paths of rank k for all k < r. Let us put
ek,m = φ−1

r−1(u(k,m)). Our goal is to define a preimage of u(r,m). We set z = (r,m) and choose a
minimal path (x, z − x). Then we have [ux, uz−x] = uz. We want to set ez = [ex, ez−x]. We need
the following lemma.

Lemma 5.4.1. For any two minimal paths p = (x, z − x) and p′ = (y, z − y) it holds [ex, ez−x] =
[ey, ez−y].

Proof. Set l = deg(z) and z0 = z
l = (r, d). As in the definition of minimal path let L be the line

through the origin and z and L′ – the closest parallel to L line above it with lattice points on it.
We can choose the point x to be closest to the vertical line through (0, 0) lattice point on L′. If
r > 1 Then all minimal paths are (x, lz0−x), (x+ z0, (l−1)z0−x), . . ., (x+ (l−1)z0, z0−x). Note
that if l = 1 there is a unique minimal path, so the lemma holds. So we may suppose l > 1. We
have already defined element ez−z0 , so [ex+(i−1)z0 , e(l−i)z0−x] = ez−z0 = [ex+iz0 , e(l−i−1)z0−x] holds.
We apply the operator ad(ez0) to both sides of the equation.

[ez0 , [ex+(i−1)z0 , e(l−i)z0−x]] = [[ez0 , ex+(i−1)z0 ], e(l−i)z0−x]− [[ez0 , e(l−i)z0−x], ex+(i−1)z0 ] =

− [ex+iz0 , e(l−i)z0−x] + [ex+(i−1)z0 , e(l−i+1)z0−x],

[ez0 , [ex+iz0 , e(l−i−1)z0−x]] = [[ez0 , ex+iz0 ], e(l−i−1)z0−x]− [[ez0 , e(l−i−1)z0−x], ex+iz0 ] =

− [ex+(i+1)z0 , e(l−i−1)z0−x] + [ex+iz0 , e(l−i)z0−x],

[ex+(i−1)z0 , e(l−i+1)z0−x]− [ex+iz0 , e(l−i)z0−x] = [ex+iz0 , e(l−i)z0−x]− [ex+(i+1)z0 , e(l−i−1)z0−x].

We need just one additional relation to show that [ex, elz0−x] = [ex+iz0 , e(l−i)z0−x] for any i. Let us
consider three cases.
1) l = 2. We have [ex, ez0−x] = ez0 . Applying ad(ez0) we get

0 = [ez0 , [ex, ez0−x]] = [[ez0 , ex], ez0−x] + [[ez0 , ez0 − x], ex] = −[ex+z0 , ez0−x] + [ex, e2z0 − x].

2) l ≥ 3. By the induction hypothesis [ex, e(l−2)z0−x] = [ex+iz0 , e(l−i−2)z0−x] = e(l−2)z0 . We apply
the operator ad(e2z0). Note that by Lemma 5.3.2 the triangle 0, x+ iz0, (l− i)z0−x has no interior
lattice points and no lattice points on sides x+ iz0 and (l− i)z0−x. Therefore a triangle ∆x+iz0,2z0

has no interior lattice points (it lies inside a parallelogram on sides z and x + iz0) and no lattice
points on the side x+ iz0.

[e2z0 , [ex, e(l−2)z0−x]] =[[e2z0 , ex], e(l−2)z0−x]− [[e2z0 , e(l−2)z0−x], ex] =

− [ex+2z0 , e(l−2)z0−x] + [ex, elz0−x],

[e2z0 , [ex+iz0 , e(l−i−2)z0−x]] = [[e2z0 , ex+iz0 ], e(l−i−2)z0−x]− [[e2z0 , e(l−i−2)z0−x], ex+iz0 ] =

− [ex+(i+2)z0 , e(l−i−2)z0−x] + [ex+iz0 , e(l−i)z0−x],

[ex, elz0−x]− [ex+2z0 , e(l−2)z0−x] = [ex+iz0 , e(l−i)z0−x]− [ex+(i+2)z0 , e(l−i−2)z0−x].

From this relation and all obtained by applying adez0 we have [ex, elz0−x] = [ex+iz0 , e(l−i)z0−x] for
all i, q.e.d. �

For any sequence s = (x1, x2, . . . , xn) we set es = ex1ex2 . . . exn . We need to check that by this
definition we get the same element for two equivalent (i.e. representing the same path) sequences
s and s′.

Lemma 5.4.2. If s and s′ are two equivalent sequences then es = es′.

Proof. It is enough to consider the case of l(s) = 2. Indeed suppose that we have proved for the
case of two segments and let l(s) > 2. For every two segments xi, xi+1 in s = (x1, . . . , xn) we have
es = es′ with s′ = (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn). Let us have s = (kw, lw) and s′ = (lw, kw).
Let us take two minimal paths p = (x, (k+l)w−x) and p′ = (x+lw, kw−x). Note that from Lemma
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5.4.1 we have [ex, e(k+l)w−x] = [ex+lw, ekw−x] and from the induction hypothesis [ex, ekw−x] = θkw
α1

with θ(z) defined from ex in the same way as for the EHA E .

[θkw, elw] = α1([[ex, ekw−x], elw]) =α1([ex, [ekw−x, elw]] + [[ex, elw], ekw−x]) =

α1(−[ex, e(k+l)w−x] + [ex+lw, ekw]) = 0.

But θkw = αkekw + t where t is a linear combination of ep with l(p) ≥ 2. As up for convex p are
linearly independent we have [ekw, elw] = 0. �

In such way for every convex path p of rank r we construct an element ep such that φ(ep) = up.

We put J be a vector subspace of Ẽ> generated by all ep. From Proposition 3.4.6 up is a basis of
E>, so φ gives an isomorphism between J and E>r . It remains to show that ep ∈ J for every (not
necessarily convex) path p of rank r. We will use the induction by area a(p). If a(p) = 0 then
p is convex path and the statement holds. Suppose that we have already shown it for all p with
a(p) < n.
It is enough to consider the case of l(p) = 2. If l(p) > 2 then for every subpath p′ of two segments
a(p′) < a(p), so we can choose a convexification with smaller area by the induction hypothesis. The
same argument on the area function shows that after finite number of convexifications we will get
a linear combination of convex paths.
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Figure 8. Three triangles ∆,
∆x, ∆′, the path p′ (blue) and
the convexification q (red).

For a path p = (x, (r, d)−x) we consider the region
R bounded by the line L going through the origin
and (r, d), parallel line through x and vertical lines
though (0, 0) and (r, d). The path p divides this
region in 3 segments ∆, ∆x and ∆′. Let us con-
sider two different cases.
1) There is a lattice point y in one of two trian-
gles ∆ and ∆′. We allow this point lie on the
left boundary of ∆ or right boundary of ∆′ (green
on Figure 8) but not on the boundary in common
with ∆ nor on the top boundary (black on Fig-
ure 8). Assume that y ∈ ∆ and consider paths
p′ = (y, (r, d) − y) and m = (y, x − y, (r, d) − x).
By construction we have a(q) < a(p).

Proposition 5.4.3. em = βep+t = β′ep′+t
′ where

t, t′ ∈ J and β, β′ ∈ C(q1, q2, c).

Proof. Proposition 3.4.2 we have uyux−y = βux +∑
q βquq where q runs among the set of convexifi-

cations of (y, x − y). Note that rank(y) < r and rank(x − y) < r, so by the induction hypothesis
the same holds for eyex−y. We have

em = eyex−ye(r,d)−x = βexe(r,d)−x +
∑
q

βqeqe(r,d)−x = βep +
∑
q

βqeq′ ,

where q′ is the concatenation of q and (r, d) − x. Note that l(q′) ≥ 3 and a(q′) ≤ a(p) because q′

is a local convexification of p. Therefore by the induction hypothesis eq′ ∈ J . The first equality of
the proposition holds.
The equality em = β′ep′ + t′ is proved in a similar way.

em = eyex−ye(r,d)−x = β′eye(r,d)−y +
∑
q

βqeyeq = βep′ +
∑
q

βqeq′ ,

where q′ ∈ J by the same reasons. �

Therefore we may suppose that p has no interior lattice points in ∆ and ∆′.
2) If both ∆ and ∆′ have no interior lattice points then the same is true for ∆x that is equal to
the sum of these two triangles reflected along common sides. Suppose that ∆x has lattice points
on boundaries,
(i) We have a point on the bottom boundary. Then we have a point z on the upper boundary of
the region R. We put q = (z, (r, d) − z) and q] = ((r, d) − z, z). The computation above shows
that ep = βeq + t where t ∈ J . By the construction triangle ∆z,(r,d)−z has no interior lattice

points and deg(z) = deg((r, d) − z) = 1. Therefore uq = uq] +
θ(r,d)
α1
∈ J . So we may assume that

deg((r, d)) = 1.
(ii) In subsection 3.2.4 we show that if there are no interior lattice points in ∆x,y then either
deg(x) = 1 or deg(y) = 1 or deg(x) = deg(y) = 2. We apply this statement to the triangle
∆x = ∆x,(r,d)−x. In the last case we have deg((r, d)) ≥ 2. So we may suppose that deg(x) = 1.

Set w = (r,d)−x
deg((r,d)−x) and put y = x − w. Suppose that y is positive. The triangle ∆y,w has no

interior lattice points because its area is the same as the area of ∆x,w. The area S(∆y,(r,d)−x) =
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S(∆x,(r,d)−x), so ∆y,(r,d)−x has no interior lattice points. By the induction hypothesis we get

[ey, ew] = ex, [ey, e(r,d)−x] = e(r,d)−w. Therefore

[ex, e(r,d)−x] = [[ey, ew], e(r,d)−x] = [[ey, e(r,d)−x], ew] + [ey, [ew, e(r,d)−x]] = [e(r,d)−w, ew] =
θ(r,d)

α1
∈ J,

because ((r, d)− w,w) is a minimal path. It finishes the proof of the theorem 5.1.4.

Remark 5.4.4. In fact y = x− w can be not a positive segment. But the cases of E> and E< are
analogous and rank(y) < r, so we may apply the induction hypothesis to both subalgebras. Suppose
that rank(y) = l. We get:

[ey, ew] = c−lex, [ey, e(r,d)−x] = c−le(r,d)−w. Therefore

[ex, e(r,d)−x] = c−l[[ey, ew], e(r,d)−x] = c−l[[ey, e(r,d)−x], ew] + c−l[ey, [ew, e(r,d)−x]] =

c−l[e(r,d)−w, ew] =
θ(r,d)

α1
∈ J.

6. Hopf algebra structure.

In terms of Drinfeld generators T1, T±0 and T−1 it is easy to write down the bialgebra structure
on E .

∆(T1(z)) = T1(z)⊗ 1 + T+
0 (z)⊗ T1(z),

∆(T−1(z)) = T−1(z)⊗ 1 + T−1(z)⊗ T−0 (z),

∆(T±0 (z)) = T±0 (z)⊗ T±0 (z).

It will be shown in next talks that the algebra E admits a Hopf algebra structure.
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